Контакты

Непрерывные дроби. Значение непрерывные дроби в словаре кольера. Разложение в цепную дробь

Рассмотрим последовательность

А что будет получаться при дальнейшем возрастании n? Существует ли предел Чему может равняться этот предел?

Рассмотрим положительное число х, определяемое как предел выражения


Перенесем единицу влево:


Это равенство равносильно такому:


откуда (х-1 (2+x-1) = 1 и, следовательно, или


Выражение в правой части называется цепной или непрерывной дробью. В общем виде ее можно записать так:


где а, b, с, d, вообще говоря, различные целые числа.

Если, начиная с некоторого места, повторяются одинаковые числа (или одинаковые конечные последовательности чисел), то непрерывная дробь называется периодической . Выше показано, что число может быть записано в виде периодической непрерывной дроби, хотя, как известно, это число, как и всякое другое иррациональное число, невозможно записать в виде десятичной периодической дроби .

Если десятичную периодическую дробь оборвать на каком-либо месте, мы получим ее приближенное значение (с недостатком). Например:

Оборвав непрерывную дробь, мы тоже получим ее приближенное значение в виде рационального числа. Мы видели, что и т. д. Эти дроби называют подходящими дробями для данной непрерывной дроби; в самом деле, каждая следующая подходящая дробь все ближе подходит к предельному значению данной дроби, или, иначе, дает все более точное приближение этого значения.

Можно доказать, что подходящие дроби четного порядка всегда меньше их предельного значения, а подходящие дроби нечетного порядка больше их предельного значения. Например, нетрудно проверить, что


В статье "О непрерывных дробях" (1737) Эйлер впервые указал приемы преобразования таких дробей и показал связь непрерывных периодических дробей с квадратными уравнениями и квадратическими иррациональностями. Там же показано выражение основания натуральных логарифмов, числа е * (е = 2,71828182845...), с помощью непериодической непрерывной дроби


* (Число е можно определить как . Оно играет, как и число π, важную роль в анализе и его приложениях. )

Вот еще некоторые простые разложения в непрерывные дроби, найденные Эйлером:


Разлагая в бесконечную цепную дробь е и е 2 , Эйлер, по существу, доказал иррациональность этих чисел, т. е. невозможность равенств , где m, n, р, q - произвольные натуральные числа.

Пользуясь этим, И. Г. Ламберт несколько лет спустя получил представление некоторых функций в форме бесконечных непрерывных дробей, например

Цепные дроби были введены в 1572 году итальянским математиком Бомбелли. Современное обозначение непрерывных дробей встречается у итальянского математика Катальди в 1613 году. Величайший математик XVIII века Леонардо Эйлер первый изложил теорию цепных дробей, поставил вопрос об их использовании для решения дифференциальных уравнений, применил их к разложению функций, представлению бесконечных произведений, дал важное их обобщение.

Работы Эйлера по теории цепных дробей были продолжены М. Софроновым (1729-1760), академиком В.М. Висковатым (1779-1819), Д. Бернулли (1700-1782) и др. Многие важные результаты этой теории принадлежат французскому математику Лагранжу, который нашел метод приближенного решения с помощью цепных дробей дифференциальных уравнений.

Алгоритм Евклида дает возможность найти представление (или разложение) любого рационального числа в виде цепной дроби. В качестве элементов цепной дроби получаются неполные частные последовательных делений в системе равенств (1), поэтому элементы цепной дроби называются также неполными частными. Кроме того, равенства системы (2) показывают, что процесс разложения в цепную дробь состоит в последовательном выделении целой части и перевертывании дробной части.

Последняя точка зрения является более общей по сравнению с первой, так как она применима к разложению в непрерывную дробь не только рационального, но и любого действительного числа.

Разложение рационального числа имеет, очевидно, конечное число элементов, так как алгоритм Евклида последовательного деления a на b является конечным.

Понятно, что каждая цепная дробь представляет определенное рациональное число, то есть равна определенному рациональному числу. Но возникает вопрос, не имеются ли различные представления одного и того же рационального числа цепной дробью? Оказывается, что не имеются, если потребовать, чтобы было.

Непрерывные дроби - последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби. Например, последовательность 1, 1/2, 2/3, 3/4, ..., n/(n + 1), ... порождает непрерывную дробь где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны и Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4, ... Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2?1 + 3?3)/(2?1 + 3?2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3?3 + 4?11)/(3?2 + 4?8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x, первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x. Причем они поочередно оказываются то меньше, то больше числа x (нечетные - больше x, а четные - меньше). Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4?11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем: Непрерывные дроби используются для приближения иррациональных чисел к рациональным. Предположим, что x - иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n0 - наибольшее целое число, которое меньше x, то x = n0 + (x - n0), где x - n0 - положительное число меньше 1, поэтому обратное ему число x1 больше 1 и x = n0 + 1/x1. Если n1 - наибольшее целое число, которое меньше x1, то x1 = n1 + (x1 - n1), где x1 - n1 - положительное число, которое меньше 1, поэтому обратное ему число x2 больше 1, и x1 = n1 + 1/x2. Если n2 - наибольшее целое число, которое меньше x2, то x2 = n2 + 1/x3, где x3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n0, 1/n1, 1/n2, ... непрерывной дроби, являющихся приближениями x. Поясним сказанное на примере. Предположим, что тогда первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения: 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1, .... Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны. Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x - радианная мера острого угла, то тангенс угла x равен значению непрерывной дроби с неполными частными 0, x/1, ?x2/3, ?x2/7, ?x2/9, ..., а если x - положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x/1, 12x/2, 12x/3, 22x/4, 22x/5, 32x/6, …. Формальным решением дифференциального уравнения x2dy/dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x - 1!x2 + 2!x3 - 3!x4 + ... . Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x/1, x/1, 2x/1, 2x/1, 3x/1, 3x/1, ..., а ее в свою очередь использовать для получения решения дифференциального уравнения x2dy/dx + y = 1 + x.



План:

    Введение
  • 1 Разложение в цепную дробь
  • 2 Подходящие дроби
  • 3 Приближение вещественных чисел рациональными
    • 3.1 Примеры
  • 4 Свойства и примеры
  • 5 Приложения цепных дробей
    • 5.1 Теория календаря
    • 5.2 Решение сравнений первой степени
    • 5.3 Другие приложения
      • 5.3.1 Свойства золотого сечения
  • 6 Историческая справка
  • 7 Мотивация
  • Примечания

Введение

Цепная дробь (или непрерывная дробь ) - это математическое выражение вида

где a 0 есть целое число и все остальные a n натуральные числа (то есть неотрицательные целые). Любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Число представляется конечной цепной дробью тогда и только тогда, когда оно рационально. Число представляется периодической цепной дробью тогда и только тогда, когда оно является квадратичной иррациональностью.


1. Разложение в цепную дробь

Любое вещественное число x может быть представлено (конечной или бесконечной) цепной дробью , где

где обозначает целую часть числа x .

Для рационального числа x это разложение оборвётся по достижении нулевого x n для некоторого n. В этом случае x представляется конечной цепной дробью .

Для иррационального x все величины x n будут ненулевыми и процесс разложения можно продолжать бесконечно. В этом случае x представляется бесконечной цепной дробью .

Для рациональных чисел может быть использован алгоритм Евклида для быстрого получения разложения в цепную дробь.


2. Подходящие дроби

n -ой подходящей дробью для цепной дроби , называется конечная цепная дробь , значение которой равно некоторому рациональному числу . Подходящие дроби с чётными номерами образуют возрастающую последовательность, предел которой равен x . Аналогично, подходящие дроби с нечётными номерами образуют убывающую последовательность, предел которой также равен x .

Эйлер вывел рекуррентные формулы для вычисления числителей и знаменателей подходящих дробей:

Таким образом, величины p n и q n представляются значениями континуант:

Последовательности и являются возрастающими.

Числители и знаменатели соседних подходящих дробей связаны соотношением:

p n q n - 1 - q n p n - 1 = (- 1) n - 1 , (1)

которое можно переписать в виде

Откуда следует, что


3. Приближение вещественных чисел рациональными

Цепные дроби позволяют эффективно находить хорошие рациональные приближения вещественных чисел. А именно, если вещественное число x разложить в цепную дробь, то её подходящие дроби будут удовлетворять неравенству

Отсюда, в частности, следует:


3.1. Примеры

  • Разложим число π =3,14159265… в непрерывную дробь и подсчитаем его подходящие дроби: 3, 22/7, 333/106, 355/113, 103993/33102, …
Вторая дробь (22/7) - это известное архимедово приближение. Четвёртая (355/113) была впервые получена в Древнем Китае.

4. Свойства и примеры

  • Любое рациональное число может быть представлено в виде конечной цепной дроби двумя способами, например:
  • Теорема Лагранжа : Число представляется в виде бесконечной периодической цепной дроби тогда и только тогда, когда оно является иррациональным решением квадратного уравнения с целыми коэффициентами.
Например: золотое сечение e − 1 =

для числа

  • У числа пи простой закономерности не видно:
π =
  • Теорема Гаусса - Кузьмина: Почти для всех (кроме множества меры нуль) вещественных чисел существует среднее геометрическое коэффициентов соответствующих им цепных дробей, и оно равно постоянной Хинчина.
  • Теорема Маршалла Холла. Если в разложении числа x в непрерывную дробь, начиная со второго элемента не встречаются числа большие n , то говорят, что число x относится к классу F (n ). Любое вещественное число может быть представленно в виде суммы двух чисел из класса F (4) и в виде произведения двух чисел из класса F (4). В дальнейшем было показано, что любое вещественное число может быть представленно в виде суммы 3 чисел из класса F (3) и в виде суммы 4 чисел из класса F (2). Количество требуемых слагаемых в этой теореме не может быть уменьшено - для представления некоторых чисел указанным образом меньшего количества слагаемых недостаточно.

5. Приложения цепных дробей

5.1. Теория календаря

При разработке солнечного календаря необходимо найти рациональное приближение для числа дней в году, которое равно 365,2421988… Подсчитаем подходящие дроби для дробной части этого числа:

Первая дробь означает, что раз в 4 года надо добавлять лишний день; этот принцип лёг в основу юлианского календаря. При этом ошибка в 1 день накапливается за 128 лет. Второе значение (7/29) никогда не использовалось. Третья дробь (8/33), то есть 8 високосных лет за период в 33 года, была предложена Омаром Хайямом в XI веке и положила начало персидскому календарю, в котором ошибка в день накапливается за 4500 лет (в григорианском - за 3280 лет). Очень точный вариант с четвёртой дробью (31/128, ошибка в сутки накапливается только за 100000 лет) пропагандировал немецкий астроном Иоганн фон Медлер (1864), однако большого интереса он не вызвал.


5.2. Решение сравнений первой степени

Рассмотрим сравнение: , где известны, причём можно считать, что a взаимно просто с m . Надо найти x .

Разложим в непрерывную дробь. Она будет конечной, и последняя подходящая дробь . Подставим в формулу (1):

m q n − 1 − a p n − 1 = (− 1) n − 1

Отсюда вытекает:

, или:

Вывод: класс вычетов является решением исходного сравнения.


5.3. Другие приложения


5.3.1. Свойства золотого сечения

Интересный результат, которые следует из того факта, что выражение непрерывной дроби для φ не использует целых чисел больше чем 1, состоит в том, что φ является одним из самых "трудных" действительных чисел для приближения с помощью рациональных чисел. Одна теорема (Теорема Гурвица) утверждает, что любое действительное число k может быть приближено дробью m /n при помощи

Тогда когда практически все действительные числа k имеют в конечно счёте бесконечно много приближений m /n , которые находятся на значительно меньшем расстояние от k , чем этот предел, приближения для φ (т.е. числа 5/3, 8/5, 13/8, 21/13, и т.д.) последовательно "касаются границы", удерживая расстояние на почти точно расстоянии от φ, тем самым никогда не создавая приближения столь же внушительные как, к примеру, 355/113 для π. Может быть показано что любое действительное число формы (a + b φ)/(c + d φ) – где a , b , c иd являются целыми числами, такими как ad bc = ±1 – имеют такое же свойство как и золотое сечение φ; а также, что все остальные действительные числа могут быть приближены намного лучше.


6. Историческая справка

Античные математики умели представлять отношения несоизмеримых величин в виде цепочки последовательных подходящих отношений, получая эту цепочку с помощью алгоритма Евклида. По-видимому, именно таким путём Архимед получил приближение - это 12-я подходящая дробь для или от 4-й подходящей дроби для .

В V веке индийский математик Ариабхата применял аналогичный «метод измельчения» для решения неопределённых уравнений первой и второй степени. С помощью этой же техники было, вероятно, получено известное приближение для числа π (355/113). В XVI веке Рафаэль Бомбелли извлекал с помощью цепных дробей квадратные корни (см. его алгоритм).

Начало современной теории цепных дробей положил в 1613 году Пьетро Антонио Катальди. Он отметил основное их свойство (положение между подходящими дробями) и ввёл обозначение, напоминающее современное. Позднее его теорию расширил Джон Валлис, который и предложил термин «непрерывная дробь» . Эквивалентный термин «цепная дробь » появился в конце XVIII века.

Применялись эти дроби в первую очередь для рационального приближения вещественных чисел; например, Христиан Гюйгенс использовал их для проектирования зубчатых колёс своего планетария. Гюйгенс уже знал, что подходящие дроби всегда несократимы и что они представляют наилучшее рациональное приближение.

В XVIII веке теорию цепных дробей в общих чертах завершили Леонард Эйлер и Жозеф Луи Лагранж.


7. Мотивация

Непрерывные дроби являются самыми "математически естественными" представлениями вещественных чисел.

Большинство людей знакомы с десятичным представлением вещественных чисел, которое может быть определено как

где a 0 может быть любым целым числом, а последующие a i являются одним из элементом {0,1,2,…,9}. В этом представление, число π, к примеру, может быть представлено как последовательность целых чисел .

Это десятичное представление имеет несколько проблем. Одна из них, многие рациональные числа не имеет конечного представления в этой системе. Например, число 1/3 представимо бесконечной последовательностью (0,3,3,3,3,…). Другая проблема заключается в том, что константа 10 является по сути произвольным выбором, который оказывает предпочтение числам, которые как-либо относятся к целому числу 10. Например, 137/1600 имеет конечное десятичное представление, тогда как 1/3 не имеет, не потому, что 137/1600 проще чем 1/3, а всего лишь потому, что 1600 делит степень 10 (10 6 = 1600 × 625). Запись как цепная дробь является представлением вещественных чисел, которая не имеет этих проблем.

Давайте рассмотрим как мы можем описать число, такое как 415/93, которое примерно равняется 4,4624. Это примерно 4.Вообще-то это чуть больше чем 4, около 4 + 1/2. Но 2 в знаменателе не совсем точно; там должно быть число чуть больше чем 2, примерно 2 + 1/6. Таким образом, 415/93 примерно равняется 4 + 1/(2 + 1/6). Но 6 в знаменателе не верно; настоящее значение чуть больше 6, 6+1/7. Таким образом, 415/93 является 4+1/(2+1/(6+1/7). Это точное значение.

Опуская некоторые обязательные части в выражении 4 + 1 / (2 + 1 / (6 + 1 / 7)) мы получим краткую нотацию . (Заметьте, что общепринято заменять только первую запятую точкой с запятой).

Представление как непрерывная дробь вещественного числа может быть определена таким образом. Она имеет несколько желательных свойств:

  • Представление как непрерывная дробь конечно тогда и только тогда когда число является рациональным.
  • Каждое рациональное число имеет по-существу единственное представление как непрерывная дробь. Каждое рациональное число можно представить в точности двумя способами, т.к. [a 0 ; a 1 , … a n − 1 , a n ] = [a 0 ; a 1 , … a n − 1 , a n − 1, 1]. Математики предпочитают иметь взаимно-однозначное соответствие между рациональными числами и цепными дробями; первая, более короткая нотация выбрана в качество каноническое представления.
  • Представление как непрерывная дробь иррационального числа единственно.
  • Цепная дробь является периодической тогда и только тогда, когда число является квадратичной иррациональностью, т.е. имеет форму

для целых a , b , c , d ; где b и d не ноль и c >1 и c не является точным квадратом.

К примеру, периодическая непрерывная дробь является золотым сечением, а периодическая непрерывная дробь является квадратным корнем из 2.

  • Раннее усечение представления числа x в виде цепной дроби приводит к рациональному приближению x, которая в определенном смысле является "наилучшим" рациональным приближением.

Последнее свойство чрезвычайно важно. У десятичного представления числа его нет. Усечение десятичного представления числа приводит к рациональному приближению числа, но обычно к не очень хорошему приближению. К примеру, усечение 1/7 = 0.142857… в разных местах приводит к приближениям таким как 142/1000, 14/100 и 1/10. Но очевидно лучшим рациональным приближением будет само число "1/7". Обрывая десятичное представление π мы получаем приближения такие как 31415/10000 и 314/100. Цепная дробь π начинается . Усекая это представление мы получаем отличные рациональные приближение 3, 22/7, 333/106, 355/113, 103993/33102, …. Знаменатели 314/100 и 333/106 почти одинаковые, но ошибка в приближении 314/100 в девятнадцать раз больше ошибки, чем в приближении 333/106. Как приближении π, более чем в сто раз точнее приближения 3,1416.

, Дробь , Дробь (математика) , Правильная дробь .

НЕПРЕРЫВНЫЕ ДРОБИ. Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби.

Например, последовательность 1, 1/2, 2/3, 3/4,..., n /(n + 1),... порождает непрерывную дробь

где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны

Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4,.... Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (2Ч 1 + 3Ч 3)/(2Ч 1 + 3Ч 2) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (3Ч 3 + 4Ч 11)/(3Ч 2 + 4Ч 8) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x , первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x . Причем они поочередно оказываются то меньше, то больше числа x (нечетные – больше x , а четные – меньше).

Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 4Ч 11 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:

Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x – иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n 0 – наибольшее целое число, которое меньше x , то x = n 0 + (x n 0), где x n 0 – положительное число меньше 1, поэтому обратное ему число x 1 больше 1 и x = n 0 + 1/x 1 . Если n 1 – наибольшее целое число, которое меньше x 1 , то x 1 = n 1 + (x 1 – n 1), где x 1 – n 1 – положительное число, которое меньше 1, поэтому обратное ему число x 2 больше 1, и x 1 = n 1 + 1/x 2 . Если n 2 – наибольшее целое число, которое меньше x 2 , то x 2 = n 2 + 1/x 3 , где x 3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n 0 , 1/n 1 , 1/n 2 ,... непрерывной дроби, являющихся приближениями x .

Поясним сказанное на примере. Предположим, что , тогда

Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения : 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1,.... Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны.

Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x – радианная мера острого угла, то тангенс угла x x /1, - x 2 /3, - x 2 /7, - x 2 /9, ..., а если x – положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x /1, 1 2 x /2, 1 2 x /3, 2 2 x /4, 2 2 x /5, 3 2 x /6,... . Формальным решением дифференциального уравнения x 2 dy /dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x – 1!x 2 + 2!x 3 – 3!x 4 +.... Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x /1, x /1, 2x /1, 2x /1, 3x /1, 3x /1,..., а ее в свою очередь использовать для получения решения дифференциального уравнения x 2 dy /dx + y = 1 + x .

Понравилась статья? Поделитесь ей