Контакты

8 уравнение клапейрона клаузиуса. Уравнение Клапейрона – Клаузиуса. Вывод и анализ уравнения клапейрона – клаузиуса

Клапейрона - Клаузиуса уравнение

термодинамическое уравнение, относящееся к процессам перехода вещества из одной фазы в другую (испарение, плавление, сублимация, полиморфное превращение и др.). Согласно К. - К. у., Теплота фазового перехода (например, теплота испарения, теплота плавления) при равновесно протекающем процессе определяется выражением

где Т - температура перехода (процесс изотермический), dp/dT - значение производной от давления по температуре при данной температуре перехода, (V 2 -V 1 ) - изменение объёма вещества при переходе его из первой фазы во вторую.

Первоначально уравнение было получено в 1834 Б. П. Э. Клапейрон ом из анализа Карно цикл а для конденсирующегося пара, находящегося в тепловом равновесии с жидкостью. В 1850 P. Клаузиус усовершенствовал уравнение и распространил его на др. фазовые переходы. К. - К. у. применимо к любым фазовым переходам, сопровождающимся поглощением или выделением теплоты (т. н. фазовым переходом 1 рода), и является прямым следствием условий фазового равновесия (См. Фазовое равновесие), из которых оно и выводится.

К. - К. у. может служить для расчёта любой из величин, входящих в уравнение, если остальные известны. В частности, с его помощью рассчитывают теплоты испарения, экспериментальное определение которых сопряжено со значительными трудностями.

Часто К. - К. у. записывают относительно производных dp/dT или dT/dp:

Для процессов испарения и сублимации dp/dT выражает изменение давления насыщенного пара р с температурой Т, а для процессов плавления и полиморфного превращения dT/dp определяет изменение температуры перехода с давлением. Иными словами, К. - К. у. является дифференциальным уравнением кривой фазового равновесия в переменных р, Т.

Для решения К. - К. у. необходимо знать, как изменяются с температурой и давлением величины L, V 1 и V 2 , что представляет сложную задачу. Обычно эту зависимость устанавливают эмпирически и решают К. - К. у. численно.

К. - К. у. применимо как к чистым веществам, так и к растворам и отдельным компонентам растворов. В последнем случае К. - К. у. связывает парциальное давление насыщенного пара данного компонента с его парциальной теплотой испарения.

Ю. И. Поляков.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Клапейрона - Клаузиуса уравнение" в других словарях:

    КЛАПЕЙРОНА МЕНДЕЛЕЕВА УРАВНЕНИЕ, уравнение состояния (см. УРАВНЕНИЕ СОСТОЯНИЯ) для идеального газа (см. ИДЕАЛЬНЫЙ ГАЗ), отнесенное к 1 молю (см. МОЛЬ) газа. В 1874 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) на основе уравнения Клапейрона… … Энциклопедический словарь

    КЛАПЕЙРОНА-КЛАУЗИСА УРАВНЕНИЕ - термодинамическое уравнение, относящееся к процессам перехода вещества из одной фазы в другую (испарение, плавление, полиморфное превращение и др.). Согласно Клапейрона Клаузиса уравнения теплота фазового перехода (например, теплота плавле … Металлургический словарь

    Ур ние состояния идеального газа, устанавливающее связь между его объемом V. давлением ри абс. т рой Т. Имеет вид: pV=nRT. где п число молей газа, R =8,31431 Дж/моль. К) газовая постоянная. Для 1 моля газа pv=RT, где v молярный объем. К. М. у.… … Химическая энциклопедия

    Уравнение состояния Статья является частью серии «Термодинамика». Уравнение состояния идеального газа Уравнение Ван дер Ваальса Уравнение Дитеричи Разделы термодинамики Начала термодинамики Уравнен … Википедия

    - (Клапейрона Менделеева уравнение), зависимость между параметрами идеального газа (давлением р, объёмом V и абс. темп рой Т), определяющими его состояние: pV=BT, где коэфф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен… … Физическая энциклопедия

    Уравнение состояния Стат … Википедия

    - (Клапейрона Менделеева уравнение), зависимость между давлением p, абсолютной температурой T и объемом V идеального газа массы M: pV=BT, где B=M/m (m масса молекулы газа в атомных единицах массы). Установлена французским ученым Б.П.Э. Клапейроном… … Современная энциклопедия - Клапейрона Менделеева уравнение, найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной температурой Т. К. у.… … Большая советская энциклопедия

    Клапейрона Менделеева уравнение [по имени франц. физика Б. Клапейрона (В. Clapeyron; 1799 1864) и рус. химика Д. И. Менделеева (1834 1907)], ур ние состояния идеального газа: pVm =RT, где р давление, Т термодинамическая температура газа, Vm… … Большой энциклопедический политехнический словарь

§ 3. Фазовые переходы. Уравнение Клапейрона-Клаузиуса

В системе, состоящей из нескольких фаз чистого вещества, находящихся в равновесии, возможны переходы вещества из одной фазы в другую. Такие переходы называются фазовыми переходами или превращениями агрегатных состояний.

Рассмотрим равновесный переход одного моля вещества из одной фазы (1) в другую (2), совершающийся при постоянных давлении и температуре. Энергии Гиббса (G 1 и G 2) моля вещества в фазах 1 и 2 равны (условие равновесия). Следовательно:

G 2 = G 1 (III, 14)

Напишем уравнения (III, 13б) полных дифференциалов для энергии Гиббса одного моля чистого вещества в двух равновесных фазах 1 и 2:

dG 1 = V 1 dP – S 1 dT

dG 2 = V 2 dP – S 2 dT (III, 15)

Вычитая верхнее уравнение из нижнего, получим:

dG 2 – dG 1 = (V 2 – V 1) dP – (S 2 – S 1) dT

Изменения P и Т здесь были не независимыми, а такими, при которых сохранялось равновесие между фазами 1 и 2. Таким образом, между P и Т сохранялась функциональная связь, соответствующая фазовому равновесию. Поэтому, если G 1 = G 2 (равновесие при давлении P и температуре Т ), то G 1 + dG 1 = G 2 + dG 2 (равновесие при давлении P + dP и температуре T + dT ), т. е. dG l = dG 2 или dG 2 dG 1 = 0. Следовательно

(V 2 V 1)dP (S 2 S 1)dT = 0

Взаимное превращение, фаз рассматривалось здесь как равновесное и изотермическое, поэтому:

S 2 – S 1 = S =
=
=
(III, 17)

Здесь
– теплота фазового превращения, поглощаемая при переходе моля вещества из фазы 1 в фазу 2; V 2 – V 1 – разность мольных объёмов двух фаз.

Из уравнений (III, 16) и (III, 17) получим:

(III, 18)

Уравнение (III, 18) называется уравнением Клапейрона - Клаузиуса и является общим термодинамическим уравнением, приложимым ко всем фазовым переходам чистых веществ, т.е. к превращениям агрегатных состояний.

При превращении одной фазы в другую такие свойства как удельный или мольный объём, внутренняя энергия и энтропия одного грамма или одного моля вещества изменяются скачкообразно. Однако отсюда не следует, что внутренняя энергия всей двухфазной системы не является в этом случае непрерывной функцией её состояния. В самом деле, система, состоявшая в начале процесса, например, из некоторого количества льда при 0°С и 1 атм, при постоянном давлении и подведении теплоты превращается в двухфазную систему лед-жидкая вода, в которой по мере поглощения теплоты масса льда постепенно и непрерывно убывает, а масса воды растет. Поэтому также постепенно и непрерывно изменяются такие свойства системы в целом как внутренняя энергия, энтальпия, энтропия и др.

§ 4. Фазовые переходы первого рода. Плавление. Испарение

Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, – называются фазовыми переходами первого рода. К ним относятся агрегатные превращения – плавление, испарение, возгонка и др.

Из фазовых переходов первого рода рассмотрим плавление и испарение, представляющие более общий интерес, чем другие процессы.

Плавление. Теплота плавления – перехода твердой фазы в жидкую – всегда положительна. Объём (мольный, удельный) жидкой фазы (V ж = V 2) в общем случае может быть больше или меньше объёма того же количества твердой фазы (V т = V 1). Отсюда в соответствии с уравнением (III, 18) вытекает, что величина dP / dT или обратная ей величина dT / dP , характеризующая изменение температуры с увеличением давления, может быть положительной или отрицательной. Это значит, что температура плавления может повышаться или понижаться с увеличением давления.

Так, для бензола (t пл. = 5,4°C;
= 9986 Дж /моль; V ж = 87,28 см 3 /моль; V т = 86,27 см 3 /моль ) получаем по уравнению (III, 18):

Обратная величина dT / dP = 0,0282
К/Па. Таким образом, с ростом давления вблизи точки плавления температура плавления бензола повышается.

Величина dT / dP положительна для огромного большинства веществ. Она имеет отрицательное значение лишь для воды, висмута и немногих других веществ, для которых плотность жидкости при температуре плавления больше плотности твердой фазы и (V ж V т )

Испарение. Теплота испарения – перехода жидкой фазы в газообразную – так же, как и теплота плавления, положительна. В этом случае всегда объём (удельный, мольный) газа больше соответствующего объёма жидкости, т. е. в уравнении (III, 18) всегда V 2 > V 1 . Поэтому dP / dT , а значит, и dT / dP также всегда положительны. Следовательно, температура испарения всегда повышается с ростом давления.

При температурах, далеких от критической, плотность насыщенного пара во много раз меньше плотности жидкости, а обратная величина – мольный (удельный) объём пара во много раз больше мольного (удельного) объёма жидкости. Поэтому значением V 1 = V ж в уравнении (III, 18) можно пренебречь, и оно примет вид:

(III, 18a)

Если вдали от критической температуры насыщенный пар можно считать идеальным газом, тогда = RT / P , и из уравнения (III, 18) получим 1:

(III, 19)

(III, 19а)

Теплота испарения жидкостей изменяется с температурой, не сильно убывая при средних температурах и очень сильно вблизи критической температуры, при которой
= 0. Например, для Н 2 О:

, кал/г

Таблица 1. Энтальпия и энтропия испарения некоторых жидкостей при нормальной температуре кипения (Р = 1 атм)

Вещество

T кип., K

,
кал/моль

,
кал/моль· K

Кислород

Этиловый эфир

Этиловый спирт

§ 5. Зависимость давления насыщенного пара от температуры

Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рис.2, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 2. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (III, 18), а вдали от критической температуры уравнением (III, 19).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (III, 19а)

(III, 20)

Представив уравнение (III, 20) в виде неопределенного интеграла, получим:

(III, 21),

где С – константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах
(в этом случае тангенс наклона прямой равен
). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.3 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Однако уравнение (III, 21) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур – от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом. Поэтому уравнение, охватывающее зависимость P = f (T ) в широком интервале температур, неизбежно становится эмпирическим.

Рис.3. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

§ 6. Сверхкритическое состояние вещества.

Сверхкритическое состояние – четвертая форма агрегатного состояния, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояний, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –146,95° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода, поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как температуры плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr , KI ). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем. Приведём только некоторые примеры его использования.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

Применение СКФ оказалось весьма успешным для очистки от загрязнений электронных схем в процессе их производства, так как на них не остается никаких следов очищающего растворителя.

В связи с быстрыми темпами выработки активной части запасов легкой нефти резко возрос интерес к методам увеличения нефтеотдачи пластов. Если в 70–80 годы XX века число проектов, направленных на решение проблемы увеличения нефтеотдачи посредством нагнетания смешивающихся углеводородных растворителей, «инертных» газов и диоксида углерода было сопоставимо, то в конце XX и начале XXI столетий только метод нагнетания СО 2 имел устойчивую тенденцию роста. Эффективность применения СО 2 для повышения нефтеотдачи доказана не только экспериментальными и теоретическими работами, но и результатами многочисленных промышленных испытаний.

Не стоит забывать, что технология увеличения нефтеотдачи пластов с использованием СО 2 позволяет параллельно решать проблему консервации огромного количества выделяемого промышленностью углекислого газа.

Особенности процесса воздействия нагнетаемого CO 2 на нефтегазовую залежь зависят от его агрегатного состояния.

Превышение давления и температуры выше критических значений для углекислого газа (а это наиболее вероятная ситуация в пластовых условиях), предопределяет его сверхкритическое состояние. В этом случае CO 2 , обладающий исключительной растворяющей способностью по отношению к углеводородным жидкостям при прямом растворении в пластовой нефти, снижает её вязкость и резко улучшает фильтрационные свойства. Указанное обстоятельство даёт все основания отнести СКФ – технологии повышения нефтеотдачи пластов к одним из наиболее перспективных.

Физическая химия (органическая химия , часть I). В.А.Старцева, Л.Е.Никитина, Н.П. ...

  • Контрольная работа №2 по физической химии

    Документ

    Контрольная работа № 2 по физической химии Вариант 2 Чему равен температурный... . Контрольная работа № 2 по физической химии Вариант 3 Перечислите физико-химические величины... Контрольная работа № 2 по физической химии Вариант 12 Электроды определения. ...

  • Методическое пособие для лабораторной работы №4 по курсу физической химии для студентов дневной формы обучения химико-технологического факультета и факультета строительного материаловедения

    Методическое пособие

    ВЕЛИЧИНЫ КОНСТАНТЫ РАВНОВЕСИЯ В практикумах по физической химии часто встречается лабораторная работа, касающаяся... с. 3. Петров Н.А., Черепанов В.А. Ермишина Ю.А. Практикум по физической химии . Методическое пособие. Екатеринбург: изд-во...

  • Программа вступительного экзамена по специальности 02. 00. 04 "физическая химия"

    Программа

    Равновесия // М.: Металлургия.-1988.-560с. Курс физической химии / Я.И. Герасимов, В.П. Древинг, Е.И. Ермин и др.: под... .- 1980.- 180с. Горшков Б.И., кузнецов И.А. / Основы физической химии . 2–е изд. // М.: Изд-во Московского университета...

  • В системе, состоящей из нескольких фаз чистого вещества, возможны переходы вещества из одной фазы в другую. Такие переходы называют фазовыми переходами. Фазовые переходы характеризуются зависимостью температуры фазового превращения от внешнего давления или давления насыщенного пара от температуры системы. Уравнение, характеризующее такие зависимости, предложено Клапейроном и и позже модифицировано Клаузиусом.

    Пусть 1 моль вещества равновесно переходит из одной фазы (1) в другую (2) при р, Т = const. Ограничимся рассмотрением фазовых переходов первого рода, для которых характерно равенство изобарных потенциалов двух фаз и скачкообразное изменение энтропии S и объёма V .

    К фазовым переходам первого рода относятся следующие изотермические переходы:

    (испарение),

    (сублимация),

    (плавление, кристаллизация).

    Условием равновесием является равенство мольных энергий Гиббса вещества в двух фазах: G 1 = G 2 . Если р и Т одновременно изменяются на dp и dT , то G тоже изменится на dG и новое условие равновесия запишется как

    Из соотношения (2.40) следует, что

    Т. е. . (14)

    С учетом того, что

    где DV = V 2 - V 1 — разность мольных объёмов двух фаз, DS и DH - изменение энтропии и энтальпии вещества при переходе 1 моля вещества из одной фазы (1) в другую (2). Уравнение (4.16) называют уравнением Клапейрона-Клаузиуса. Оно устанавливает связь между изменением температуры фазового перехода с изменением внешнего давления или изменением давления насыщенного пара с изменением температуры, с одной стороны, и теплотой фазового перехода и изменением объёма вещества при фазовом переходе, с другой стороны.

    1) Рассмотрим применение уравнения (4.16) к процессам плавления . В этом случае уравнение Клапейрона-Клаузиуса обычно используют в следующей форме:

    Поскольку D пл Н > 0, знак производной зависит от знака DV . Для большинства веществ

    > 0 > 0,

    вправо.

    Для немногих веществ, в том числе для воды, висмута , галлия , чугуна :

    < 0 < 0,

    что соответствует наклону кривой для этого фазового перехода влево .

    Итак, если при плавлении вещества его мольный объем уменьшается,то

    т. е. при увеличении внешнего давления температура плавления вещества уменьшается.

    Если плавление сопровождается увеличением мольного объема, то

    т. е. при увеличении внешнего давления температура плавления вещества тоже увеличивается.

    2). Рассмотрим применение уравнения (4.16) к процессам испарения и сублимации .

    Для процессов испарения или сублимации уравнение Клапейрона-Клаузиуса записывают в виде


    , (18)

    где V K — объем конденсированной фазы (жидкости V Ж или твердого тела V ТВ). При температуре, гораздо ниже критической (при Т КР: V Ж = V П), можно пренебречь объёмом жидкой фазы по сравнению с объёмом того же весового количества пара. В результате уравнение (18) преобразуется в

    При невысоких давлениях и температурах к пару можно применить законы идеальных газов () и исключить из уравнения (19) объём пара. Тогда

    . (20)

    Окончательно для процесса испарения или сублимации получаем (дифференциальную) форму уравнения Клапейрона- Клаузиуса :

    . (21)

    Если принять D пар Н постоянной величиной (что возможно для небольших температурных интервалов), то после интегрирования уравнения (21) получаем интегральную форму уравнения Клапейрона-Клаузиуса:

    , (22)

    . (23)

    Эти уравнения устанавливает в явном виде связь теплоты парообразования вещества с зависимостью давления насыщенного пара от температуры.

    Итак, для процессов парообразования ,

    т. е с увеличением температуры растет давление насыщенного пара вещества.

    В отличие от температуры плавления, температура кипения очень сильно зависит от давления, что связано с большой величиной DV , которой сопровождаются процессы испарения и сублимации.

    В отличие от теплоты парообразования, которая изменяется в широких пределах, энтропия парообразования - величина более или менее постоянная. Для многих неорганических и органических веществ выполняется правило Трутона :

    89 Дж/(моль К), (24),

    где Т н.т.кип. - нормальная температура кипения жидкости, т.е. температура кипения при внешнем давлении, равном 1 атм.

    При переходах индивидуального вещества из одного агрегат­ного состояния в другое каждому давлению соответствует опреде­ленная температура, при которой фазы находятся в состоянии термодинамического равновесия. Зависимость давления фазового перехода от температуры описывается уравнением Клапей­рона-Клаузиуса, выведенном на основе второго закона термоди­намики. Для вывода этого уравнения рассмотрим в р- v μ -коорди­натах элементарный цикл, соответствующий площади 1-2-3-4 (рис. 30).

    Предположим, что в точке f находится 1 кмоль рабочего тела, например жидкости. В процессе, соответствующем линии 1-2, при постоянном давлении подводится теплота и при постоянной

    температуре происходит превраще­ние жидкости в пар. Следовательно, процесс, соответствующий линии 1-2, является изобарно-изотермическим. Жидкость, превращаясь в пар, увеличивается в объеме от V" μ , в точке 1 до V"" μ , в точке 2. В точке 2 вся жидкость превратится в пар. Паро­образование происходит за счет подведенной теплоты Q 1 , равной теплоте парообразования (r).

    Пусть из точки 2 пар расширяется по адиабате до объема, со­ответствующего объему в точке 3, при незначительном изменении давления от р до (р-dp).. Температура при этом уменьшится от Т до (Т-dT). Затем при постоянных температуре (Т -dT) и дав­лении (р - dp) осуществим сжатие пара до объема, соответствую­щего точке 4. В точке 4 весь пар сконденсируется -превратится в жидкость.

    Отводимая теплота в процессе, соответствующем линии 3-4, равна Q 2 = Q 1 - δQ .

    Заменим процесс 4-1 адиабатным процессом 4"-1 перехода жидкости в состояние, соответствующее точке 1. Из-за малой ве­личины dp изменением разности объемов (V" μ - V" μ) и (V 3 μ - V 4 μ ,) можно пренебречь. Тогда цикл 1-2-3-4 превращается в эле­ментарный цикл Карно 1-2-3-4", для которого справедливы равенства

    δL = (V" μ - V" μ) dp

    η t = [Т - (T - dT)]/T = dT/T .

    Так как термический КПД цикла Карно можно записать также в виде η t = δL/Q l то, заменив в этом равенстве Q 1 нa r и прирав­няв правые части полученных для η t соотношений, можно записать

    δL/r = dT/T

    Подставив вместо δL полученное значение, получим

    [(V" μ - V" μ) dp]/r = dt/T

    dp/dT = r/. (173)

    Уравнение (173) называется уравнением Клапейрона-Клаузиуса. С помощью этого уравнения определяют давление или температуру при переходе индивидуального вещества из жидкого состояния в газообразное, а также объем (применительно к пару) и теплоту парообразования. Для любого другого фазового перехода вещества из одного состояния в другое в уравнении (173) следует заменить r на λ - теплоту фазового перехода (из различных фаз) в условиях равновесия. Тогда

    dp/dT = λ/ (174)

    Уравнение Клапейрона-Клаузиуса (174) можно вывести и другим путем, исходя из равенства химических потенциалов при равновесии.

    Как было показано ранее, условием равновесия двухфазной системы (при одинаковых давлении и температуре обеих фаз) является равенство их химических потенциалов (см. рис. 25), т. е. μ" = μ" , где μ" и μ" - химические потенциалы индивидуаль­ного вещества соответственно в первой и во второй фазах.

    Так как для однокомпонентной системы химический потенциал равен киломольной энергии Гиббса μ = G/n , то условие равнове­сия можно записать в виде dG"/dn" = dG"/dn".

    Учитывая что уменьшение количества вещества в одной фазе должно равняться увеличению его в другой фазе, условие равно­весия можно также записать в виде равенства энергий Гиббса в первой и во второй фазах, т. е. dG" = dG" . Выразив dG" и dG" через соответствующие параметры (110), получим

    V" μ dp - S"dT = V"" μ dp - S"dT .

    dp/dT = (S"" - S")/ (V" μ - V" μ)

    Учитывая, что приращение энтропии равно ΔS = ΔQ/T , и заменяя в полученном уравнении теплоту, подводимую на участке про­цесса перехода вещества из одной фазы в другую через λ, получим уравнение Клапейрона-Клаузиуса (174):

    dp/dT = λ/.

    При рассмотрении процесса парообразования объемом жидкости V" μ можно пренебречь вследствие малости его по сравнению с объ­емом пара V" μ . Тогда уравнение (174) можно записать в виде

    dp/dT=λp/T V" μ (175)

    Если при этом заменить объем пара из уравнения Менделеева- Клапейрона (2) на RT/p , то уравнение Клапейрона-Клаузиуса будет иметь вид

    dp/dT = λp/RT 2

    или, перенеся р в левую часть равенства и заменив dp/p на d (ln p) , получим

    d (In p)/dT = λ/RT 2 . (176)

    (177)

    где С = const.

    Если сделать еще одно допущение, т. е. принять, что λ не за­висит от температуры (λ = const) и проинтегрировать уравнение (177), то для небольшого интервала температур приближенная зависимость давления от температуры имеет вид

    lg р = - λ/2,303RТ + С

    (178)

    где С = const.

    Таким образом, по формуле (178) с достаточной для практики точностью можно определить теплоту парообразования (или другого фазового перехода) по известным р 1 и р 2 , соответствующим им температурам T 1 и Т 2 при небольшом их перепаде.

    Уравнение (173) Клапейрона-Клаузиуса характеризует фазо­вые переходы, сопровождающиеся поглощением или выделением теплоты. Такие переходы обусловлены равенством энергии Гиббса двух находящихся в равновесии фаз и скачкообразным изменением первых ее производных, т. е. объема V = (дG/дp ) T и энтропии S = - (дG/дp ) р.

    Эти переходы называются фазовыми переходами первого рода (к ним относятся испарение и конденсация, плавление и кристал­лизация) и, следовательно, уравнение Клапейрона-Клаузиуса отражает особенности перехода первого рода.

    Кроме фазовых переходов первого рода существуют также фазовые переходы второго рода. Впервые представления о перехо­дах второго рода высказал Эренфест, объясняя явления перехода гелия из одного состояния в другое.

    Для переходов второго рода характерным является отсутствие выделения и поглощения теплоты и, как следствие, равенство объ­ема и энтропии сосуществующих в равновесии фаз. Для этих пере­ходов характерно также скачкообразное изменение вторых произ­водных энергии Гиббса, которыми являются такие физические величины, как теплоемкость

    μc p = - T(д 2 G/дT 2) p

    коэффициент термического расширения

    и коэффициент сжимаемости


    Все вещества могут существовать в различных агрегатных состояниях или в различных модификациях одного агрегатного состояния в зависимости от условий (Т, р и т.д.). Переход вещества из одного агрегатного состояния в другое, или изменение модификации агрегатного состояния вещества называется фазовым переходом первого рода. Фазовые переходы 1-го рода сопровождаются выделением или поглощением теплоты.

    Рис.20
    Система может содержать одновременно несколько фаз. Чтобы такая система находилась в равновесии, необходимо выполнение нескольких условий, одно из них: термодинамический потенциал Гиббса G должен принимать минимальное значение.

    . (25)

    При динамическом равновесии выполняется уравнение:

    , (26)

    где g 1 и g 2 – удельные (относящиеся к единице массы вещества) термодинамические потенциалы 1-й и 2-й фаз.

    Уравнение, связывающее между собой давление и температуру, при которых осуществляется фазовый переход первого рода , имеет вид

    где - удельный объем. Две любые фазы вещества могут находиться в равновесии лишь при определенном давлении, зависящем от температуры.

    Максимально возможное число фаз вещества, находящихся в равновесии друг с другом равно трем, если это изобразить на плоскости p, T , то она получится разделена на три области: твердую фазу (т), жидкую (ж) и газообразную (г), рис.20

    Границами соприкасающихся фаз являются кривые сублимации (испарение твердого тела), испарения и плавления , характеризующие двухфазные равновесные состояния.

    Подобные диаграммы строят экспериментально для разных веществ, они позволяют предсказывать в каких равновесных состояниях может находиться вещество при тех или иных значениях давления и температуры, а также когда и какие оно будет испытывать фазовые превращения при том или ином процессе. Например, кривая испарения заканчивается в критической точке К , поэтому возможен непрерывный переход вещества из жидкого состояния в газообразное и обратно путем обхода точки К «сверху», в этом случае такой переход не сопровождается двухфазным состоянием.

    Задачи

    6.1. Получить уравнение Клапейрона-Клаузиуса методом циклов.

    6.2. Вывести уравнение Клапейрона-Клаузиуса методом термодинамического потенциала.

    6.3. Ромбическая сера превращается в моноклинную при . При атмосферном давлении удельная теплота превращения . Скачок удельного объема серы при фазовом превращении . Найти смещение точки фазового перехода серы при изменении давления на .

    6.4. Кусочек льда массы непрерывно нагревают при атмосферном давлении от температуры до , пока все вещество не перейдет в пар. Построить график зависимости энтропии воды от абсолютной температуры на всем вышеуказанном интервале температур.

    6.5. При стремлении температуры фазового перехода «жидкость – пар» к критической температуре Т к удельная теплота испарения (конденсации) стремится к нулю. Объяснить это свойство с помощью уравнения Клапейрона-Клаузиуса.

    6.6. В закрытом сосуде с объемом находится 1 кг воды при температуре . Пространство над водой занято насыщенным водяным паром (воздух выкачан). Найти увеличение массы насыщенного пара при повышении температуры системы на . Удельная теплота парообразования . При расчетах пар считать идеальным газом. Удельным объемом воды пренебречь по сравнению с удельным объемом пара.

    6.7 Найти зависимость давления насыщенного пара от температуры в следующих упрощающих предположениях: удельную теплоту парообразования q считать не зависящей от температуры; удельный объем жидкости пренебрежимо

    мал по сравнению с удельным объемом пара; к жидкости применимо уравнение состояния Клапейрона. (Эти упрощения допустимы вдали от критической температуры, если интервал изменения температур не слишком широк.)

    6.8. Кусок льда помещен в адиабатическую оболочку при температуре 0˚С и атмосферном давлении. Как изменится температура льда, если его адиабатически сжать до давления ? Какая доля льда при этом расплавится? Удельные объемы воды , льда . Теплоемкости воды и льда связаны соотношением .

    Ответы

    6.3.

    Понравилась статья? Поделитесь ей