Контакты

Уровень воды в сообщающихся сосудах. Сообщающиеся сосуды и их применение. Зависимость давления жидкости от глубины

Сообщающиеся сосуды

сосуды, соединённые между собой в нижней части (рис.). В наполненных одинаковой жидкостью С. с., диаметр которых настолько велик, что позволяет пренебречь капиллярным эффектом, уровни жидкости располагаются на одинаковой высоте независимо от формы сосудов. На этом основано устройство жидкостных Манометр ов, водомерных стекол паровых котлов и т.п. Если С. с. наполнены различными жидкостями, то высоты столбов этих жидкостей (считая от поверхности соприкосновения жидкостей друг с другом) обратно пропорциональны их плотностям, т. е. ρ 1 h 1 = ρ 2 h 2 , где ρ 1 и ρ 2 , h 1 и h 2 - соответственно плотности и высоты столбов жидкости. Этим соотношением пользуются для определения плотности жидкости. Если же одно из колен С. с. закрыто, то разность уровней жидкости будет зависеть от давления в закрытом колене; на этом основано устройство закрытых манометров.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Сообщающиеся сосуды" в других словарях:

    Сообщающиеся сосуды - Сообщающиеся сосуды, в которые налиты несмешивающиеся жидкости. СООБЩАЮЩИЕСЯ СОСУДЫ, соединены между собой в нижней части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если можно пренебречь капиллярными… … Иллюстрированный энциклопедический словарь

    Сосуды, соединённые между собой в нижней, части (рис.). В наполненных одинаковой жидкостью С. с., диаметр к рых настолько велик, что позволяет пренебречь капиллярным эффектом, уровни жидкости располагаются на одинаковой высоте независимо от формы … Физическая энциклопедия

    Соединены между собой в нижней части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если можно пренебречь капиллярными явлениями). На свойстве сообщающихся сосудов основано устройство жидкостных манометров,… … Большой Энциклопедический словарь

    Сосуды, соединённые между собой в ниж. части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если капиллярные явления не существенны). На свойстве С. с. основано устройство жидкостных манометров, водомерных… … Естествознание. Энциклопедический словарь

    СООБЩАЮЩИЕСЯ СОСУДЫ - сосуды, соединённые между собой в нижней части. Однородная жидкость, находящаяся в С. с., устанавливается на одинаковом уровне независимо от формы сосудов и соединяющих их колен. Если С. с. наполнены жидкостями различной плотности р1 и р2, то… … Большая политехническая энциклопедия

    Сосуды, соединённые между собой в нижней части. Однородная жидкость устанавливается на одном уровне независимо от формы сосудов (если капиллярные явления не существенны). На свойстве сообщающихся сосудов основано устройство жидкостных манометров … Энциклопедический словарь

    сообщающиеся сосуды - susisiekiantieji indai statusas T sritis fizika atitikmenys: angl. communicating vessels; connected vessels vok. kommunizierende Gefäße, n rus. сообщающиеся сосуды, m pranc. vases communicants, m … Fizikos terminų žodynas

    сообщающиеся сосуды - физ. Соединённые между собой в нижней части … Словарь многих выражений

    ДАВЛЕНИЕ - ДАВЛЕНИЕ, действие силы, приложенной к определенной поверхности. Действие силы на твердое тело в направлении, перпендикулярном к поверхности, производит нормальное давление на поверхность тела. Поверхность твердого тела находится под Д.… … Большая медицинская энциклопедия

    Ответвление русской культуры, созданной на протяжении неск. периодов российской истории эмигрантами; как правило, противостояла официальной. Истоки К.р.з. восходят к первым рус. полит, эмигрантам 16 17 вв., сам факт эмиграции к рых… … Энциклопедия культурологии

Книги

  • Новаторы. Энциклопедия науки , Роберт Пенс , Как можно не полюбить физику, если ты сам сможешь смастерить батарейку и снять самый простой фильм!Наука—все самое интересное: открытия, природные явления, известные ученые, легенды,… Категория: Наука Серия: Новаторы Производитель: Clever ,
  • CD-ROM (MP3). Дура LEX (количество CD дисков: 2) , Роберт Пенс , Dura lex sed lex. (Суров закон, но закон). Борис Палант – выдающийся нью-йоркский адвокат, доктор юридических наук, магистр искусств со специализацией в психолингвистике и семиотике,… Категория:

1. Давление – это физическая величина равная отношению модуля силы F , действующей перпендикулярно поверхности, к площади S этой поверхности: p = F / S . Чем меньше площадь опоры, тем большее давление оказывает тело на поверхность. В системе СИ давление измеряется в паскалях (Па) . Часто используются внесистемные единицы: нормальная атмосфера (атм) и миллиметр ртутного столба - мм Hg.. 1 Па = 1 Н/м 2 .1 атм = 101325 Па = 760 мм Hg. 1 атм = 101325 Па = 760 мм Hg.

2. Атмосфера – это газовая оболочка вокруг Земли. Атмосферное давление – это давление, которое оказывает атмосфера на поверхность Земли. Высота атмосферы – 3-5 тысяч км. Плотность атмосферы с высотой падает. Давление атмосферы также зависит от высоты.На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт.ст. На больших высотах эта закономерность нарушается. Эта зависимость лежит в основе работы высотометра (альтиметра) для летательных аппаратов. Атмосферное давлении впервые измерил итальянский учёный Торричелли. Он же изобрёл ртутный барометр для измерения атмосферного давления. Сейчас для измерения атмосферного давления используют барометр-анероид.

3. Французский ученый Б. Паскаль в середине XVII века установил закон, названный законом Паскаля : Давление в жидкости или газе передается во всех направлениях одинаково. Это происходит из-за хаотического движения молекул газа и жидкости. Давление в жидкостях и в газах измеряют манометром.

4. С учётом силы тяжести давление жидкости, или газа на дно или боковые стенки сосуда зависит от высоты столба жидкости, или газа и не зависит от формы сосуда. На одном уровне давление во всех точках одинаково. Сила давления на дно цилиндрического сосуда высоты h и площади основания S равна весу столба жидкости, или газа mg , где m = ρghS – масса жидкости в сосуде, ρ– плотность жидкости. Следовательно p = mg / S . p = ρ gh

5. Архимедова сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом . F = ρ gV . Это утверждение, называемое законом Архимеда , справедливо для тел любой формы

Рисунок поясняет появление архимедовой силы. В жидкость погружено тело в виде прямоугольного параллелепипеда высотой h и площадью основания S .Из-за разности давлений в жидкости на разных уровнях возникает выталкивающая или архимедова сила. Именно благодаря силе Архимеда, летают воздушные шары, стратостаты, дирижабли…. По воде и в воде плавают различные тела: рыбы, люди, корабли… Благодаря силе Архимеда происходит теплообмен (конвекция), не промерзают водоёмы до дна…

На тело, погружённое в жидкость (газ) действуют сила тяжести и сила Архимеда и если эти силы равны, то тело плавает на одном уровне, если сила Архимеда больше, то тело всплывает, если меньше, то тело тонет. Из этого следует вывод. Если плотности тела и жидкости (газа) равны, то тело плавает на одном уровне, если плотность жидкости (газа) больше, то тело всплывает, если меньше, то тело тонет. Отсюда главное условие плавания тел - плотность тела должна быть равна, или меньше плотности жидкости (газа). Это условие лежит в основе работы ареометра – прибора для измерения плотности жидкости (сахариметры, спиртометры и т.д.). При погружении в жидкость или газ вес тела уменьшается на величину силы Архимеда.

6. Законы сообщающихся сосудов:

В сообщающихся сосудах однородная жидкость устанавливается на одном уровне.

Отношение высот уровней разнородных жидкостей обратно отношению их плотностей.

H 1: H 2 = ρ 2 : ρ 1 . Высота измеряется от уровня раздела жидкостей АВ.

Сообщающиеся сосуды используются в таких приборах и устройствах, как чайник, шлюзы, манометры, гидравлические прессы…

7. При движении жидкостей и газов по трубам скорость и давление зависят от площади сечения трубы. Эта зависимость установлена законом Бернулли: Чем больше площадь сечения трубы, тем меньше скорость течения. Давление жидкости и газа тем больше, чем больше площадь сечения трубы. Это согласуется с законом сохранения полной механической энергии - с увеличением скорости увеличивается кинетическая энергия, а потенциальная энергия взаимодействия жидкости со стенками трубы уменьшается, а значит уменьшается давление.

На рисунке показано измерение давления в трубах при помощи манометра. Чем больше высота в трубке, тем больше давление.

Задачи.


  1. Плотность бамбука равна 400 кг/м 3 . Какой наибольший груз может перевозить бамбуковый плот по реке, если его площадь 1 м 2 , и толщина 1 м? Ответ: 600 кг.
Подсказка. Наибольший груз соответствует максимальному погружению плота. На основе условия плавания тел суммарная сила тяжести груза и плота будет равна силе Архимеда при полном погружении плота.

  1. При взвешивании груза в воздухе показания динамометра составили 3 Н. При опускании груза в воду, показания динамометра уменьшились до 1,5 Н. Чему равна выталкивающая сила? Ответ: 1,5 Н.
Подсказка. Ответ есть в теоретическом описании архимедовой силы.

  1. На весах уравновешен сосуд с водой. Нарушится ли равновесие весов, если в воду опустить палец так, чтобы он не касался дна и стенок сосуда. Подсказка. Нарушится, т. к. палец давит на воду…

  2. Какова сила давления керосина, заполняющего цистерну, на кран, находящийся на глубине 4 м. Площадь крана 5 см 2 . Атмосферное давление не учитывать. Плотность керосина 800кг/м 3 . Ответ: 16 Н.
Подсказка. Сила давления равна произведению давления на площадь.

  1. Теплоход переходит из устья реки в очень солёное Каспийское море. Как изменится архимедова сила, действующая на теплоход. Подсказка. Не изменится. Почему?

  2. Лодка, массой 120 кг плывёт по реке. Чему равен объём подводной части лодки? Ответ: 0,12 м 3 .
Подсказка. Используется условие плавания тел.

  1. С помощью рычага поднимают груз массой 20 кг, прикладывая силу 80 Н. Во сколько раз длинное плечо больше короткого? Ответ: в 2,5 раза. Подсказка. Используется условие равновесия рычага. (блок 2).

  2. Как заставить взлететь воздушный шар?

  3. Почему стальная проволока тонет, а корабль, корпус которого сделан из стали не тонет?

  4. В сообщающиеся сосуды налили одинаковый объём воды и подсолнечного масла. Уровень какой жидкости будет выше?

  5. Стержень объёмом 0. 1 куб.м. опустили под воду на тросе.
Найти: 1. Вес рельса в воздухе.

2. Выталкивающую силу.

3. Вес рельса в воде.

4. Силу натяжения троса.

5. Изобразите силы, действующие на стержень в воде


Найти: 1.Давление воды на этой глубине.

2. Силу давления воды на задвижку площадью 0,002 кв.м.

13. Сравните:1 . Силы давления кирпича на стол.

2. Давление кирпича на стол.

14. Свинцовый шар массой 113 кг опустили в воду на цепи.

Найти: 1.Вес шара в воздухе.

2. Объём шара и силу Архимеда, действующую на него в воде

3. Вес шара в воде.

4. Силу натяжения цепи.

5. Изобразите силы, действующие на шар в воде.
15. Ныряльщик погружается на глубину 20 м.

Найти: 1. Давление на этой глубине.

2. Силу давления на ныряльщика, если площадь его тела 1,2 кв.м.
16. Сравните: 1. Силу Архимеда, действующую на 1 и 2 тело.

2. Силу Архимеда, действующую на 2 и 3 тела.

Формулы


  1. p = F / S – давление

  2. p = mg / S , p = ρ gh - давление столба жидкости или газа

  3. F = ρ gV сила Архимеда

  4. H 1: H 2 = ρ 2 : ρ 1 – закон сообщающихся сосудов

Блок 4. Строение вещества. Тепловое движение молекул. Броуновское движение. Диффузия. Внутренняя энергия. Температура. Тепловое равновесие. Способы изменения внутренней энергии. Закон сохранения энергии. Тепловые двигатели.


  1. Физика – наука о Природе. Природа состоит из материи. Материя бывает двух видов: поле и вещество. Из вещества состоят физические тела. Единичной структурой вещества является молекула. Молекула – мельчайшая частица вещества, сохраняющая свойства данного вещества. Молекулы состоят из атомов. Атомы – наименьшая частица химического элемента. Атомос в переводе означает НЕДЕЛИМЫЙ.
2. Все тела состоят из молекул; молекулы постоянно движутся; молекулы взаимодействую друг с другом.

То, что тела состоят из молекул – очевидный факт. Форма и строение молекул разных веществ определены Крупные молекулы человек увидел при помощи электронного микроскопа. Молекулы одного и того же вещества абсолютно одинаковы.

Молекулы постоянно движутся .

Доказательством этого положения является диффузия – явление проникновения молекул одного вещества в другое. Диффузия происходит и в газах, и в жидкостях, и в твёрдых телах. С увеличением температуры скорость диффузии увеличивается. Открытое Броуном движение частичек краски в растворе названо броуновским движением и тоже доказывает движение молекул.

Молекулы взаимодействуют друг с другом. Доказательством этого положения является способность тел сохранять свою форму. Молекулы притягиваются друг к другу при удалении и отталкиваются при приближении.

4. Скорость движения молекул тем больше, чем выше температура тела. Поэтому движение молекул, из которых состоит тело, называют тепловым. Температура определяет степень нагретости тела. Температура главная характеристика тел, находящихся в тепловом равновесии. Тепловое равновесие устанавливается, когда между телами нет теплообмена.

Температура – мера средней кинетической энергии молекул газа. С увеличением температуры растёт скорость молекул и их кинетическая энергия, растёт скорость диффузии, увеличивается скорость броуновского движения. Температура измеряется в градусах Цельсия. Прибор для измерения температуры – термометр.

5. Внутренняя энергия тела кинетическая энергия движения молекул и потенциальная энергия их взаимодействия. Она не зависит ни от механического движения тела, ни от его положения относительно других тел. Способы изменения внутренней энергии – совершение работы и теплопередача. Если тело само совершает работу, то его внутренняя энергия уменьшается (пар в кастрюле с кипящей жидкостью, совершает работу, поднимая крышку). Если работа совершается над телом, то его внутренняя энергия увеличивается (потрите лист бумаги о поверхность стола).

Теплообмен или теплопередача – передача энергии от одного тела к другому без совершения работы. Способы теплопередачи: 1. Теплопроводность – передача энергии за счёт движения молекул. 2. Конвекция – передача энергии при движении слоёв жидкости или газа. 3. Излучение – передача энергии лучами.

При теплопередаче внутренняя энергия тела либо увеличивается, либо уменьшается, т. е. тело получает, или теряет количество теплоты. Количество теплоты – энергия, получаемая телом в результате теплообмена. Теплота нагревания (охлаждения) находится по формуле. Q = mc (t 2 t 1 ) , где c – удельная теплоёмкость тела (количество теплоты, необходимое для нагревания 1кг вещества на 1 о С).

Источником энергии является топливо. Теплота сгорания топлива Q = qm , где q –удельная теплота сгорания топлива – количество теплоты, выделяющееся при сгорании 1 кг топлива, а m – масса топлива.

6. Закон сохранения и превращения энергии: Во всех явлениях, происходящих в Природе, энергия не возникает и не исчезает. Она только превращается из одного вида в другой, или передаётся от одного тела к другому. При этом её значение сохраняется.

7. Тепловые двигатели . Развитие технического прогресса зависит от умения использовать огромные запасы внутренней энергии, содержащиеся в топливе, т.е. использовать внутреннюю энергию для совершения работы во всех видах транспорта, при работе станков, при выполнении строительных работ и т.д. Устройства, в которых внутренняя энергия топлива превращается в механическую энергию, называются тепловыми двигателями. Это паровые и газовые турбины, паровая машина, двигатель внутреннего сгорания, реактивный двигатель.

Двигатель внутреннего сгорания ещё называют четырёхтактным, потому что один его рабочий цикл происходит за четыре хода поршня: впуск, сжатие, рабочий ход, выпуск. Основные части двигателя: цилиндр, поршень, впускной и выпускной клапаны. Движение поршня при помощи шатуна и коленчатого вала передаётся колёсам..

Отношение полезной работы двигателя к энергии, выделенной при сгорании топлива, называют коэффициентом полезного действия двигателя . КПД = А / Q 1 , КПД = (Q 1 - Q 2 ) / Q 1 . А – полезная работа, Q 1 энергия, полученная от нагревателя (теплота сгорания топлива), а Q 2 количество теплоты, отданное холодильнику (выброшенное в атмосферу).

Формулы.

Количество теплоты

Q = mc (t 2 – t 1) – теплота нагревания и охлаждения.

Q = qm – теплота сгорания топлива

КПД = А / Q 1 , КПД = (Q 1 - Q 2) / Q 1 – КПД теплового двигателя

Алимханова Сэуле Ибраевна

Учитель физики КГУ "Герасимовская средняя школа" села Герасимовка, Уланского района Восточно-Казахстанской области, образование высшее.

Краткосрочное планирование интегрированного урока

Физика и география

Тема «Сообщающиеся сосуды. Сообщающиеся сосуды в природе»

Класс: ____ 7 Б /русский язык обучения/ _________

Учитель физики:__ Алимханова Сэуле Ибраевна _________

Учитель географии:__ Чотиева Айнур Мухаметшарифовна ________

Таблица по планированию

Занятие 3

Название занятия:

Сообщающиеся сосуды

Учебник «Физика» для 7 класса,

конспект урока, презентация в Power Pount , демонстрационный материал для опыта, образцы сосудов

Общие цели

Обеспечить эффективное усвоение данного материала, умение различать виды сообщающихся сосудов. Углубить знания темы в интеграции с географией, формируя единые взгляды о мироздании. Продолжить формирование естественно-математической грамотности, развивая функциональную грамотность.

Результат обучения

Прийти к выводу, что сообщающиеся сосуды не только бывают в физике, но и в природе. Различают виды сообщающихся сосудов, умеют находить схождение в быту, на практике и в природе. Знают понятия.

Ключевые идеи

Научное открытие свойства сообщающихся сосудов датируется 1586 г. (голландский ученый Стевин ). Но оно было известно еще жрецам древней Греции. Археологи обнаружили в Грузии водопровод (XIII в), работающий по принципу сообщающихся сосудов. Сообщающиеся сосуды мы встречаем ежедневно. Приведите их примеры? Эти сосуды мы используем для заварки чая, кипячения воды и полива цветов на грядке. Ребята вы догадались, о каких сосудах идет речь ( Лейка, чайник, кофейник….). Вода, налитая, например, в чайник, стоит всегда в резервуаре чайника и в боковой трубке на одном уровне. Боковая трубка и резервуар соединены между собой в нижней части. Ребята, как вы думаете, какие сосуды мы назовем сообщающимися. Сообщающимися сосудами называют сосуды, соединенные между собой в нижней части.

Все моря и океаны мира являются тоже сообщающимися сосудами. Ведь все они соединены между собой проливами. Поэтому уровень моря во всем мире одинаков.

Акведук – это водяной желоб, поддерживаемый мостами. Акведуки использовались в древние времена в качестве наземных прообразов современных систем водоснабжения.

Древнеримские инженеры хорошо решали сложные технические задачи, а вот с основами физики они были знакомы не достаточно хорошо. Римский водопровод прокладывался над землей, а не проще ли это было сделать так, как сейчас, проложив трубы под землей.

Фонтан.

Действие фонтана также основано на принципе сообщающихся сосудов. Вода из резервуара течет по трубке и стремится подняться до того же уровня, что и в большом сосуде. Но трубка заканчивается, и вода бьет фонтаном вверх. Даже если расположить шланг так, чтобы его уклон поднимался вверх, вода не перестает быть из фонтана.

Современный водопровод.

Практически такой же фонтан вы наблюдаете каждый день, открывая кран, потому что действие водопровода основано на том же принципе.

Примером сообщающихся сосудов является артезианский колодец.

Шлюз.

Шлюз используется для перевода судов с одного уровня реки на другой. Устройство шлюза также основано на принципе сообщающихся сосудов.

Закон сообщающихся сосудов люди используют в разных технических устройствах: водопроводах с водонапорной башней; водомерных стеклах; гидравлическом прессе; фонтанах; шлюзах; сифонах под раковиной, “водяных затворах” в системе канализации.

Закон сообщающихся сосудов люди используют в быту (чайник, кофейник, лейка).

В водомерном стекле парового котла, паровой котел (1) и водомерное стекло (3) являются сообщающимися сосудами.

Задания

1.Актуализация знаний – демонстрация сосудов и найти отличия, сделать выводы

2. Деление на группы

3. Практическая работа в малых группах – Определение Закона сообщающихся сосудов:

I группа: Опыт № 1

    В одну из трубок (СС) налить воды.

    Ответить на вопросы: (зажим не убираем)

а) Что произойдёт, если убрать зажим?

б) Как после этого распределится вода по стеклянным трубкам?

    Проверить свои предположения, гипотезы, ответы) экспериментально.

    Как поведёт себя жидкость, если одну из трубок:

Поднять

Опустить

Наклонить в разные стороны?

Запись в тетради

Законы (СС)

I часть закона (СС): Однородная жидкость в СС оставить 7 см ус танавливается на одном уровне.

II группа: Опыт № 2

Охарактеризуйте прибор стоящий на вашем столе:

    Форма трубок какая?

( разная, одинаковая, уже, шире )

    Основание (о бщее или разное)

    Как можно назвать данный прибор?

    Сколько СС на приборе?

    5.Налейте воды в СС

    Что будет происходить с уровнем жидкости трубках?

    Однородная жидкость в СС любой формы

устанавливается на одном уровне.

III группа: Опыт № 3

В (СС) нальём разные жидкости: воду и подсолнечное масло, равного объёма.

    Что вы видите?

а) Уровни будут различными.

б) Жидкости не смешиваются

в) Откуда вы это видите? Покажите место, где они не смешиваются

Это место назовём границей раздела двух жидкостей. Через эту границу проведём горизонтальную линию.

Работа с рисунком

    Что вы видите на рисунке слайда и на рисунке, который перед вами? т.е. выше этой прямой.

а) Два столба: столб воды и столб масла.

б) Чем отличаются столб воды и столб масла: высотой

в) Высота столба масла больше высоты столба воды.

Вот вы и вывели II часть закона (СС).

Здесь ещё одной физической величины не хватает.

Какую величину забыли?

а) Чем ещё отличаются вода и масло друг от друга: плотностью.

б) Чему равна их плотность?

Плотность воды 1000 кг/м, плотность масла 930 кг/м

а) Высота столба масла с меньшей плотностью больше , высоты столба воды с большей плотностью.

г) Но вместо масла и воды может быть и другая жидкость: например: ртуть, спирт, глицерин. Поэтому II часть закона (СС) должны дать в общем виде для всех жидкостей.

б) высота столбов жидкости будет зависеть от её плотности

в) чем меньше плотность жидкости, тем выше её столб в сосуде.

II часть закона (СС):

В (СС), содержащих разные жидкости, высота столба жидкости с меньшей плотностью будет больше высоты столба жидкости с большей плотностью

4. Работа с рисунком - сравнить.

5. Релаксация – Упражнение для глаз по карте

6. Деление на малые группы

7. Работа в малых группах – составление постера

1 группа – Артезианские колодцы

2 группа – Гейзеры

3 группа – Водопоровод

От каждой группы выступление спикеров

8. Демонстрационный опыт «Фонтан своими руками»

9. Рефлексия –показ видеофильма о c ообщающихся сос

10. Домашнее задание

11. Оценивание

Дополнительные задания

1. Создание диалога

2. Работа с картой

3. Навыки практической работы

4. Работа с опережающими заданиями

Дополнительное чтение

Учебник «Материки и океаны» для 7 класса, §48, хрестоматия к учебнику

Учебник География» для 6 класса

Номер

группы

Сотрудничество в группе

(распределение и выполнение обязанностей)

Поведение (не

мешать работе

других групп, не

отвлекаться от

выполнения задания, не кричать)

Раскрытие

материала,

задания,

темы

Умение слушать

презентации

других групп, задавать вопросы,

делать дополнения

Общий

балл








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: сообщающиеся сосуды, закон сообщающихся сосудов, применение закона сообщающихся сосудов в жизни человека

Задачи урока:

  • образовательная
  • – продолжить формирование понятия давления жидкости на дно сосуда и изучение закона Паскаля на примере однородных и разнородных жидкостей в сообщающихся сосудах;
  • развивающая
  • – формировать интеллектуальные умения анализировать, сравнивать, находить примеры сообщающихся сосудов в быту, технике, природе, развивать навыки самостоятельной работы с дополнительной литературой;
  • воспитательная
  • – воспитание аккуратности, бережного отношения к оборудованию кабинета, умения слушать и быть услышанным.

Оборудование: различные виды сообщающихся сосудов, два стеклянных сосуда, соединенных резиновой трубкой, презентация “Сообщающиеся сосуды”, диск “Фонтаны С-П”.

Средства обучения: учебник, карточки-инструкция.

Тип урока: эвристическая беседа.

Структура урока

Этап урока Деятельность учителя Деятельность ученика Время
1 Постановка учебных проблем. Сообщение. Запись темы урока в тетради. 2 мин.
2 Изучение нового материала. Беседа, эксперимент, демонстрация Приложений 1–4. Записи в тетрадях, исследование зависимости уровня жидкости в сообщающихся сосудах. 15 мин.
3 Применение сообщающихся сосудов в быту, технике, природе. Демонстрация Приложений 5–8, обобщение сообщений учащихся. Сообщения учащихся о применении сообщающихся сосудов в быту, технике. 18 мин.
4 Закрепление материала. Демонстрация Приложений 9–10, обобщение ответов учащихся. Решают поставленные учителем задания, делают записи в тетрадях. 7 мин.
5 Итоги урока. Подведение итогов урока, оценивание результатов работы учащихся на уроке, запись домашнего задания на доске. Обсуждение и оценивание своих результатов работы на уроке, запись домашнего задания в дневниках. 3 мин.

Ход урока

1. Мотивационный этап

Учитель. Здравствуйте! Сегодня речь пойдет сосудах, с которыми встречаемся каждый день дома и в школе, когда наливаем чай или поливаем цветы из лейки.

Демонстрация: Лека, чайник. Такие сосуды получили название сообщающиеся сосуды (Учащиеся записывают дату и тему урока в тетради).

Научное открытие свойства сообщающихся сосудов датируется 1586 г. (голландский ученый Стевин). Но оно было известно еще жрецам древней Греции. Археологи обнаружили в Грузии водопровод (XIII в), работающий по принципу сообщающихся сосудов.

2. Формирование умений и навыков

Учитель. Что общего у этих предметов? (Cлайд 1 )

Учащиеся. Вода, налитая, например, в чайник, стоит всегда в резервуаре чайника и в боковой трубке на одном уровне. Боковая трубка и резервуар соединены между собой в нижней части.

Учитель. Правильно. Сообщающимися сосудами называют сосуды, соединенные между собой в нижней части. (Учащиеся записывают определение в тетради).

С сообщающимися сосудами можно проделать простой опыт. Возьмем две стеклянные трубки, соединенные резиновой трубкой. Сначала резиновую трубку в середине зажимают и в одну из трубок нальем воды. Что произойдет, если открыть зажим?

Учитель. Как поведет себя жидкость, если одну из трубок поднять?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок опустить?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Как поведет себя жидкость, если одну из трубок наклонить?

Учащиеся. Жидкость установиться в обоих сосудах на одном уровне.

Учитель. Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. (Слайд 2 )

(Учащиеся записывают закон в тетради).

Изменится ли уровень жидкости, если правый сосуд будет шире левого? уже левого? если сосуды будут иметь разную форму?

Учащиеся. Нет, жидкость установиться в обоих сосудах на одном уровне.

Учитель. При изменении формы сосудов может изменяться лишь высота уровня воды в сосудах, отмеренная от уровня стола (из-за того, что изменяется объем сосудов). Однако уровни воды в сообщающихся сосудах не зависят от формы сосудов и останутся равны. (Демонстрация опыта с сообщающимися сосудами различной формы).

(Слайд 3 )

Что произойдет, если в сообщающиеся сосуды налить две несмешивающиеся жидкости разной плотности?

Учащиеся. Высота столбов жидкостей в сосудах будет разной.

Учитель. При равенстве давлений высота столба жидкости большей плотности меньше, чем высота столба жидкости меньшей плотности. (Учащиеся записывают в тетради).

Попробуйте доказать это, используя закон Паскаля и определение гидростатического давления... Проверим ваш результат.

(Слайд 4 )

По закону Паскаля p 1 = p 2 , по определению гидростатического давления p 1 = g 1 h 1 , p 2 = g 2 h 2 , отсюда g 1 h 1 = g 2 h 2 , т.е h 1: h 2 = 2: 1 .

Высоты столбов разнородных жидкостей сообщающихся сосуда обратно пропорциональны их плотностям. (Учащиеся записывают в тетради).

Применение сообщающихся сосудов в быту, природе, технике.

Закон сообщающихся сосудов люди используют в разных технических устройствах: водопроводах с водонапорной башней; водомерных стеклах; гидравлическом прессе; фонтанах; шлюзах; сифонах под раковиной, “водяных затворах” в системе канализации.

Закон сообщающихся сосудов люди используют в водопроводах с водонапорной башней. Водонапорная башня и стояки водопровода являются сообщающимися сосудами, поэтому жидкость в них устанавливается на одном уровне.

В водомерном стекле парового котла, паровой котел (1) и водомерное стекло (3) являются сообщающимися сосудами. Когда краны (2) открыты, жидкость в паровом котле и водомерном стекле устанавливается на одном уровне, так как давления в них равны.

В устройстве гидравлических машин используется свойство сообщающихся сосудов. (Демонстрируется гидравлический пресс). Так, большой и малый цилиндры гидравлического пресса являются сообщающимися сосудами. Высоты столбов жидкости одинаковы, пока на поршни не действуют силы.

Видео “фонтаны города С-П” Каскады падающей воды украшают многие города, а действуют фонтаны благодаря закону сообщающихся сосудов. Виды знаменитых фонтанов Петродворца. Фонтаны в парке “Победы”, Тбилиси. Фонтаны на площади “Дружбы”, Ташкент. Фонтаны Еревана. И конечно знаменитые фонтаны С-П.

Действие артезианских колодцев и гейзеров основано на законе сообщающихся сосудов.

(Слайд 6 ) Горячий фонтан в местечке Гейзер в Исландии. От названия этого местечка возник термин “гейзер”.

(Cлайд 7 ) Римлянам был неизвестен закон сообщающихся сосудов. Для снабжения населения водой они возводили многокилометровые акведуки, водопроводы, доставлявшие воду из горных источников. Инженеры древнего Рима опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Они полагали, что если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода ведь должна течь вверх, – и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути. Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из-за незнания элементарного закона физики!

3. Систематизация умений и навыков

Учитель. Повторим изученное. Приведите примеры использования закона сообщающихся сосудов в природе, быту и технике.

Учащиеся. Это гейзеры, фонтаны, шлюзы, водопровод с водонапорной башней, гидравлический пресс, водомерные стекла, артезианские колодцы, сифоны под раковиной.

Учитель. (Слайд 7 ) Используя схему устройства шлюза и схему шлюзования судов, объясните принцип действия шлюзов.

Учащиеся. В работе шлюзов используется свойство сообщающихся сосудов: жидкость в сообщающихся сосудах находится на одном уровне. Когда ворота 1 открываются, вода в верхнем течении и шлюзе устанавливается на одном уровне и т.д., когда последние ворота откроются, уровень воды в шлюзе и нижнем течении сравняется, корабль будет опускаться вместе с водой и сможет продолжить плавание.

4. Итоги урока

Учитель. Сегодня на уроке мы познакомились с сообщающимися сосудами, в которых жидкость устанавливается на одном уровне. Мне очень интересно было работать с вами. Вы показали отличный уровень подготовки к уроку. Теперь вы знаете, что закон сообщающихся сосудов люди используют в разных технических устройствах: водопроводах с водонапорной башней; водомерных стеклах; гидравлическом прессе; фонтанах; шлюзах; сифонах под раковиной, “водяных затворах” в системе канализации.

5. Домашняя работа

Всем спасибо за работу. Записываем домашнее задание.

(Учащиеся записывают домашнее задание в дневники)



Понравилась статья? Поделитесь ей