Контакты

Индуктивность понятие расчет единица измерения. Что такое индуктивность, её определение и единица измерения. Схемы соединения катушек индуктивностей

(от лат. inductio - наведение, побуждение), величина, характеризующая магн. св-ва электрич. цепи. Ток, текущий в проводящем контуре, создаёт в окружающем пр-ве магн. , причём Ф, пронизывающий контур (сцепленный с ним), прямо пропорционален току I:Ф=LI. Коэфф. пропорциональности L наз. И. или коэфф. самоиндукции контура. И. зависит от размеров и формы контура, а также от магнитной проницаемости окружающей среды. В СИ И. измеряется в , в Гаусса системе единиц она имеет длины (1 Гн=109 см).

Через И. выражается эдс самоиндукции? в контуре, возникающая при изменении в нём тока:

Если провести аналогию между электрич. и механич. явлениями, то магн. энергию следует сопоставить с кинетич. энергией тела T=mv2/2 (m - тела, v - его ), при этом И. будет играть роль массы, а - скорости. Т. о., И. определяет инерц. св-ва тока.

Для увеличения И. применяют катушки индуктивности с железными сердечниками; в результате зависимости магн. проницаемости m ферромагнетиков от напряжённости магн. поля (а следовательно, и от тока) И. таких катушек зависит от I. И. длинного соленоида из N витков с площадью поперечного сечения S и длиной l в среде с магн. проницаемостью m равна (в ед. СИ):

где m0- магн. проницаемость вакуума.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

В электродинамике (коэффициент самоиндукции) (от лат. inductio - наведение, побуждение) - параметр электрич. цепи, определяющий величину эдс самоиндукции, наводимой в цепи при изменении протекающего по ней тока и (или) при её деформации. Термин "И." употребляется также для обозначения элемента цени (двухполюсника), определяющего её индуктивные свойства (синоним - катушка самоиндукции).И. является количеств. характеристикой эффекта самоиндукции, открытого независимо Дж. Генри (J. Henry) в 1832 и М. Фарадеем (М. Faraday) в 1835. При изменении тока в цепи и (или) при её деформации происходит изменение магн. поля, к-рое, в соответствии с законом индукции, приводит к возникновениювихревого электрич. поля E(r, t )с отличной от нуля циркуляцией

по замкнутым контурам l i ;пронизываемым магн. потоком Ф i . Внутри проводника вихревое поле Е взаимодействует с порождающим его током и оказывает противодействие изменению магн. потока (Ленца правило). Циркуляция E i и магн. поток Ф i существенно зависят от выбора контура l i внутри проводника конечной толщины. Однако при медленных движениях и квазистацнонарных процессах, когда полный ток

(j - плотностьтока) одинаков для всех нормальных сечений провода S пр, допустим переход к усреднённым характеристикам: эдс самоиндукции E си =< E i > )и сцепленному с проводящим контуром магн. потоку Ф=<Ф i > . В предположении о том, что линии тока замыкаются сами на себя при одном обходе по контуру,

где r ^ , - радиус-векторы точек нормального сечения провода, Ф j (r ^) - магн. поток через , ограниченную линией тока, проходящей через точку r ^ , E j (r ^) - циркуляция вектора E вдоль этой линии тока, j n - нормальная к S np составляющая j. В более сложных ситуациях, когда линии тока замыкаются после неск. обходов по контуру или вообще не являются замкнутыми кривыми, процедура усреднения требует уточнений, однако во всех случаях она должнаудовлетворять энергетич. соотношению: =E си I ( Р - суммарная взаимодействия поля с током).Усреднённый магн. поток в случае квазистацнонарных процессов пропорц. току:

Ф=L.I (в СИ), Ф= 1 / c (LI)(в системе СГС). (1)

Коэф. L и Lназ. И. Величина L измеряется в генри, L - в см.

E си =-d/dt(LI) (в СИ), E cи = -(1/с 2)(d/dt)(LI)(2) (в системе СГС).

Производная по времени от И. определяет ту часть E си, к-рая связана с деформацией проводящего контура; в случае недеформируемых цепей и квазистационарных процессов И. может быть вынесена из-под знака дифференцирования. энергия, запасённая в создаваемом им магн. поле, записывается в форме, аналогичной выражению для кинетич. энергии.

W m = 1 / 2 LI 2 (в СИ), W m = 1 / 2 c 2 LI 2 (в системе СГС). (3)

Соотношение (3) позволяет различать И. внутреннюю L i , определяющую энергию магн. поля, сосредоточенного в проводниках, и внешнюю L e , связанную с внеш. магн. полем (L=L i +L e , L= L i + L e). В важном частном случае токовой цепи, выполненной из проводов, толщина к-рых мала по сравнению с радиусамиих изгибов или расстояниями между соседними проводами, можно считать, что структура токов и ближнего магн. поля такая же, как и для прямого провода того же сечения (подобные наз. квазилинейными). В приближении заданной структуры токов, не зависящей от способа их возбуждения, И. определяется только геометрией проводящей цепи (толщиной и длиной проводов и их формой). Для квазилинейного провода кругового сечения L i =(m 0 /8p)m i l (l - длина провода, m i - магн. проницаемость проводника), а внешняя И. может быть представлена как индуктивность взаимная двух параллельных бесконечно тонких проводящих нитей, одна из к-рых (l 1) совпадает с осевой линией проводника, а другая (l 2) совмещена с его поверхностью:

где r 1 , r 2 - радиус-векторы точек на контурах l l , l 2 , m е - магн. проницаемость окружающей среды [для аналогия, соотношений в системе СГС L "(m 0 /4p)L]. Из (4) видно, что L e логарифмически расходится при стремлении радиуса провода к нулю, поэтому идеализацией бесконечно тонкого провода нельзя пользоваться при описании явлений самоиндукции. Приближённые вычисления интеграла в (4) с учётом внутренней И. дают:

где l и а - длина и радиус провода. Это выражение обладает логарифмич. точностью - его относит. погрешность порядка величины l/ln(l/a). Примеры типичных электрич. цепей и выражения для их И. приведены на рис. 1 и 2.

Рис. 1. Круговой виток. Индуктивность витка (проводящего тора): L=m 0 R(ln(8R/r)-2+ 1 / 4 m i ), Гн, r<

Особое значение в электротехнике и радиотехнике имеют проволочные катушки с достаточно плотной намоткой - соленоиды (рис. 3), применяемые для увеличения И. Поскольку И. цепей, в к-рые включены соленоиды, ими в основном и определяются, принято говорить об И. соленоида. Под величиной И. идеальногосоленоида понимают И. эфф. проводящей поверхности (совпадающей с его каркасом), по к-рой протекают азимутальные токи с плотностью j пов =Ik (I - ток в соленоиде, k - число витков на единице длины).


Понятие И. допускает обобщение на быстропеременные гармонич. ехр(iwt)-процессы, при описании к-рых нельзя пренебрегать запаздыванием эл.-магп. взаимодействий, скин-эффектом в проводниках, дисперсией среды. Комплексные амплитуды тока I w и эдс самоиндукции E w связаны соотношением:

И. L(w) зависит от частоты (как правило, уменьшается с её ростом). Эфф. сопротивление R L (w) определяет часть энергетич. потерь, в т. ч. потери на , и связано с L(w) Крамерса - Кронига соотношением:


где интеграл берётся в смысле гл. значения. На низких частотах сопротивлением R L (w) можно пренебречь, тогда E w и I w сдвинуты по фазе на p/2. Соотношение (3) для высокочастотных процессов преобразуется к виду:

где W m w - усреднённая по периоду колебаний энергия ближних (квазистационарных) магн. полей (полная магн. энергия поля не определена из-за линейно растущей во времени энергии поля излучения).Если в цепи действует гармонич. сторонняя эдс , то во втором законе Кирхгофа величина E w может быть перенесена (со сменой знака) в правую часть равенства:

где С - ёмкость, включённая в цепь. Соотношение (9) позволяет трактовать величину Z L =iwLкак индуктивную часть импеданса цепи (при Z C =-i/ w С - ёмкостная, a Z R =R - активная части полного импеданса Z=Z L +Z C +Z R ). Принято считать, что двухполюсника имеет индуктивный характер, если его мнимая часть больше нуля [если рассматриваются ехр (-iwt)-процессы, то меньше нуля]. В технике довольно часто И. наз. любой двухполюсник, импеданс к-рого имеет индуктивный характер п в опредсл. диапазоне частот линейно зависит от w. Если индуктивные выполнены в виде катушек самоиндукции, то считать их двухполюсниками можно, вообще говоря, только в том случае, когда через магн. поля между ними и с др. элементами цепи пренебрежимо мало. Тогда их импедансы можно складывать в соответствии с правилами Кирхгофа: при последовательном соединении , а при параллельном При описании сильноточных цепей часто требуется обобщение понятия И. на случай нелинейных систем. Если неподвижный проводящий контур помещён всреду, в к-рой вектор магн. индукции В и напряжённость магн. поля Н связаны нелинейным локальным соотношением: B(r, t)=B, то сцепленный с контуром магн. поток можно считать однозначной ф-цией тока Ф=Ф(I). В соответствии с законом индукции Фарадея, эдс самоиндукции в контуре равна:

Величина L Д (I)=d Ф /d Iназ. дифференциальной (или иногда динамической) И. Выражение для запасённой энергии пост. тока приобретает вид:

B линейном приближении (при I "0) L Д "L и выражения (10), (11) переходят в (2) и (3) соответственно. Лит.: Тамм И. Е., Основы теории электричества9 изд., М., 1976; Калантаров П. Л., Цейтлин Л. А. Расчет индуктивностей, 3 изд., Л., 1986; Ландау Л. Д. Лифшиц Е. М., Электродинамика сплошных сред, 2 изд. М., 1982. М. А. Миллер, Г. В. Пермитин

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :

Смотреть что такое "ИНДУКТИВНОСТЬ" в других словарях:

    Размерность L2MT−2I−2 Единицы измерения СИ Гн СГС … Википедия

    ИНДУКТИВНОСТЬ, физическая величина, характеризующая магнитные свойства электрических цепей и равная отношению потока Ф магнитной индукции, пересекающего поверхность, ограниченную проводящим контуром, к силе тока в этом контуре, создающем Ф; в СИ… … Современная энциклопедия

    индуктивность - индуктивность; статическая индуктивность; отрасл. коэффициент самоиндукции Скалярная величина, характеризующая связь потокосцепления самоиндукции с током в рассматриваемой электрической цепи, равная отношению потокосцепления самоиндукции этой… … Политехнический терминологический толковый словарь - физическая величина, характеризующая магнитные свойства электрических цепей и равная отношению потока Ф магнитной индукции, пересекающего поверхность, ограниченную проводящим контуром, к силе тока в этом контуре, создающем Ф; в СИ измеряется в… … Большой Энциклопедический словарь

    ИНДУКТИВНОСТЬ, свойство электрической цепи или элемента цепи, создающий ЭЛЕКТРОДВИЖУЩУЮ СИЛУ (ЭДС) при изменении электрического тока. В системе СИ единицей измерения служит ГЕНРИ. Самоиндукция (обозначение L) имеет место при протекании тока по… … Научно-технический энциклопедический словарь

    ИНДУКТИВНОСТЬ, индуктивности, мн. нет, жен. (книжн. спец.). отвлеч. сущ. к индуктивный. Ииндуктивность доказательств. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Мера магнитной энергии, возникающей вокруг данной цепи, когда через нее проходит определенный электрический ток. Наличие индуктивности всегда тормозит процесс изменений тока. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское… … Морской словарь

    Свойство магнитного поля, создаваемого током проводника, при изменениях величины этого тока возбуждать в проводнике так наз. электродвижущую силу самоиндукции. Энергия возникающих при этом в проводнике индукционных токов образуется за счет… … Технический железнодорожный словарь

У каждого из нас бывали проблемы с предметами в школе. У кого-то были проблемы с химией, у кого-то - с физикой. Но даже если с этими предметами у вас всё всегда было хорошо, вы наверняка не помните всех тем, что вам давали в школе. Одной из таких тем является электромагнетизм в целом и расчёт индуктивности катушек в частности.

Для начала окунёмся немного в историю такого явления, как магнетизм.

История

Магнетизм начинает свою историю ещё с Древнего Китая и Древней Греции. Открытый в Китае магнитный железняк использовался тогда в качестве стрелки компаса, указывающей на север. Есть упоминания, что китайский император использовал его во время битвы.

Однако вплоть до 1820 года магнетизм рассматривался лишь как явление. Всё его практическое применение было заключено в указании стрелки компаса на север. Однако в 1820 году Эрстед провёл свой опыт с магнитной стрелкой, показывающий влияние электрического поля на магнит. Этот опыт послужил толчком для некоторых учёных, взявшихся за это всерьёз, чтобы разработать теорию магнитного поля.

Спустя всего 11 лет, в 1831 году, Фарадей открыл закон электромагнитной индукции и ввёл в обиход физиков понятие "магнитное поле". Именно этот закон послужил основой для создания катушек индуктивности, о которых сегодня и пойдёт речь.

А прежде чем приступить к рассмотрению самого устройства этих катушек, освежим в голове понятие магнитного поля.

Магнитное поле

Это словосочетание знакомо нам со школьной скамьи. Но многие уже забыли о том, что оно означает. Хотя каждый из нас помнит, что магнитное поле способно воздействовать на предметы, притягивая или отталкивая их. Но, помимо этого, у него есть и другие особенности: например, магнитное поле может воздействовать на электрически заряженные объекты, а это значит, что электричество и магнетизм тесно связаны между собой, и одно явление может плавно перетекать в другое. Учёные поняли это достаточно давно и поэтому стали называть все эти процессы вместе одним словом - "электромагнитные явления". На самом деле электромагнетизм - довольно интересная и ещё не до конца изученная область физики. Она очень обширна, и те знания, что мы можем здесь изложить вам, - это очень малая часть того, что известно человечеству о магнетизме сегодня.

А сейчас перейдём непосредственно к предмету нашей статьи. Следующий раздел будет посвящён рассмотрению непосредственно устройства катушки индуктивности.

Что такое катушка индуктивности?

Мы сталкиваемся с этими предметами постоянно, но вряд ли придаём им какое-то особое значение. Это для нас обыденность. На самом деле катушки индуктивности встречаются сегодня практически в каждом приборе, но наиболее яркий пример их использования - трансформаторы. Если вы думаете, что трансформаторы бывают только на энергетических подстанциях, то вы сильно ошибаетесь: ваше зарядное устройство от ноутбука или смартфона - тоже своего рода трансформатор, только меньшего размера, чем те, что используются на электростанциях и распределительных подстанциях.

Любая катушка индуктивности состоит из сердечника и обмотки. Сердечник представляет собой стержень из диэлектрического или ферромагнитного материала, на который наматывается обмотка. Последняя делается чаще всего из медной проволоки. Количество витков обмотки напрямую связано с величиной магнитной индукции полученной катушки.

Теперь, прежде чем рассмотреть расчет индуктивности катушек и формулы, необходимые для него, поговорим о том, какие параметры и свойства мы будем вычислять.

Какие параметры есть у катушки?

Катушка обладает несколькими физическими характеристиками, отражающими её качество и пригодность для той или иной работы. Одной из них является индуктивность. Она численно равна отношению потока магнитного поля, создаваемого катушкой, к величине этого тока. Индуктивность измеряется в Генри (Гн) и в большинстве случаев принимает значения от единиц микрогенри до десятков Генри.

Индуктивность является, пожалуй, самым важным параметром катушки. Поэтому неудивительно, что большинство людей даже не думают о том, что существуют другие величины, способные описывать поведение катушки и отражать её пригодность для того или иного применения.

Ещё один параметр, который необходимо учитывать, - добротность контура. Она тесно связана с предыдущим параметром и представляет собой отношение реактивного сопротивления к активному (сопротивлению потерь). Соответственно, чем выше добротность - тем лучше. Её повышение достигается за счёт выбора оптимального диаметра провода, материала и диаметра сердечника, числа обмоток.

Сейчас рассмотрим подробнее самый важный и наиболее волнующий нас параметр - индуктивность катушки.

Немного больше про индуктивность

Мы уже разобрали это понятие, и теперь осталось поговорить о нём немного подробнее. Зачем? Нам ведь предстоит расчет индуктивности катушек, а значит, необходимо понимать, что это такое и зачем нам её рассчитывать.

Катушка индуктивности предназначена для создания магнитного поля, а значит, имеет параметры, которые описывают его силу. Таким параметром является магнитный поток. Но разные катушки имеют разные потери при прохождении через них тока и, соответственно, разный КПД. В зависимости от диаметра проводов и количества витков катушка может давать разное по величине магнитное поле. Значит, необходимо ввести такую величину, которая бы отражала зависимость между величиной магнитного потока и силой тока, пропускаемой через катушку. Таким параметром и является индуктивность.

Зачем нужен расчёт индуктивности?

Катушек разных видов в мире достаточно много. Они отличаются между собой свойствами, а значит, и применениями. Одни используются в трансформаторах, другие, соленоиды, выполняют роль электромагнитов большой силы. Кроме этих, применений у катушек индуктивности найдётся предостаточно. И для всех них необходимы разные типы катушек. Они отличаются по своим свойствам. Но большую часть этих свойств можно объединить с помощью понятия индуктивности.

Мы уже близко подошли к объяснению того, что включает в себя формула расчета индуктивности катушки. Но стоит оговориться, что речь пойдёт не о "формуле", а о "формулах", так как все катушки можно разделить на несколько больших групп, для каждой из которых своя отдельная формула.

Виды катушек

По функциональности различают контурные катушки, находящие применение в радиофизике, катушки связи, используемые в трансформаторах, и вариометры, то есть катушки, показатели которых можно варьировать изменением взаимного расположения катушек.

Также существует такой вид катушек, как дроссели. Внутри этого класса также есть деление на обычные и сдвоенные. Они имеют высокое сопротивление переменному току и очень низкое - постоянному, благодаря чему могут служить хорошим фильтром, пропускающим постоянный ток и задерживающим переменный. Сдвоенные дроссели отличаются большей эффективностью при больших токах и частотах по сравнению с обычными.

Формулы расчёта

Пришла пора нам перейти к основной теме статьи. Начнём мы с того, что расскажем о том, как произвести расчет индуктивности катушки без сердечника. Это самый простой вид расчёта. Но тут тоже есть свои тонкости. Возьмём, для простоты, катушку, обмотка которой лежит одним слоем. Для неё справедлив расчет однослойной катушки индуктивности:

L=D 2 *n 2 /(45D+100l).

Здесь L - индуктивность, D - диаметр катушки в сантиметрах, n - число витков, l - длина намотки в сантиметрах. Однослойная катушка предполагает то, что толщина намотки будет не больше одного слоя, а значит, для неё справедлив расчет плоской катушки индуктивности. В целом большинство формул для расчётов индуктивностей очень похожи: существенные различия только в коэффициентах при переменных в числителе и знаменателе. Самым простым тут является расчет индуктивности катушки без сердечника.

Представляет интерес также формула расчета индуктивности катушки с большим числом витков:

L=0,08*D 2 *n 2 /(3*D+9*b+10*c).

Здесь b - ширина провода, c - его высота. Такая формула эффективна для того, чтобы произвести расчет многослойной катушки индуктивности. Применяется она на практике чуть менее часто, чем та, о которой пойдёт речь ниже.

Самым актуальным, пожалуй, будет расчет индуктивности катушки с сердечником. Есть специальная формула, которая показывает, что эта индуктивность определяется материалом, из которого сделан сердечник, а точнее - его магнитной проницаемостью. Выглядит эта формула так:

L=m*m 0 *n 2 *S/l,
где m - магнитная проницаемость материала сердечника, m 0 - магнитная постоянная (она равна 12,56·10-7 Гн/м), S - площадь поперечного сечения катушки, l - длина намотки.

Расчет витков катушки индуктивности производится очень просто: это число намотанных на сердечник слоёв проводника.

Мы разобрались с формулами, а теперь немного о том, где же конкретно эти формулы и расчёты могут нам пригодиться.

Практическое применение

Эти формулы имеют очень широкое применение ввиду повсеместного распространения катушек индуктивности. Как мы уже выяснили, бывают разные виды катушек, каждый из которых соответствует своему применению. В связи с этим становится необходимым как-то разделять их по характеристикам, ведь для каждой отрасли необходима своя определённая индуктивность и добротность.

В основном расчет индуктивности катушек применяется на производстве и в электротехнике. Каждый радиолюбитель должен знать, как производить расчет индуктивности, иначе как ему определить, какая катушка из огромного множества подойдёт для его цели, а какая - нет.

Сегодня очень много учёных, интересующихся магнетизмом и магнитными явлениями. Они изучают как магнитную, так и электрическую стороны веществ, пытаясь выявить закономерности и синтезировать мощные магниты с определёнными нужными свойствами: например, с высокой температурой плавления или сверхпроводимостью. Все эти материалы могут быть использованы в огромном количестве отраслей.

Приведём пример с аэрокосмической отраслью: перспективными для дальних межзвёздных перелётов являются ракеты с ионными двигателями, которые создают тягу посредством выброса ионизированного газа из сопла. Сила толчка в таком двигателе зависит от температуры газа и скорости его движения. Соответственно, чтобы придать газу максимальную силу для разгона, нам требуется очень сильный магнит, разгоняющий заряженные частицы и к тому же имеющий очень высокую температуру плавления для того, чтобы не расплавиться при выходе газов из сопла.

Заключение

Знание никогда не бывает лишним и всегда где-нибудь, да пригодится. Теперь, если вам попадётся программа расчета индуктивности катушки, вы без труда сможете сказать, почему там именно такие формулы и какие переменные в них что означают. Эта статья предназначена лишь для вашего ознакомления, и если вы хотите знать больше, стоит почитать специализированную литературу (благо за много лет изучения магнитных явлений её накопилось очень много).

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

  • L = N х F: I.

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название "самоиндукция". По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

  • L = F: I,

где F - магнитный поток, I - ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

  • Ei = -L х dI: dt.

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

  • W = L I 2: 2.

"Катушка ниток"

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк - это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

  • I = U: R,

где I характеризует силу тока, U - показывает напряжение, R - сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь "катушка - источник тока", то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN 2 R 2: 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N 2 R 2: 2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от "витков в квадрате".
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

  • df: dt = L dl: dt.

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом - ярмом.

В наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:

  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

  • L= µ0n 2 V,

где µ0 показывает магнитную проницаемость вакуума, n - это число витков, V - объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

  • L = µ0N 2 S: l,

где S - это площадь поперечного сечения, а l - длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

  • B= µ0nI,

где µ0 - это магнитная проницаемость вакуума, n - это число витков, а I - значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

  • E = LI 2: 2,

где L показывает значение индуктивности, а E - запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) - это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для в

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить формула используется следующая:

  • XL = W х L,

где XL показывает реактивное сопротивление катушки, а W - круговая частота.

Если используется реактивное то формула будет выглядеть следующим образом:

Важными характеристиками колебательного контура являются резонансная частота, и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

  • Q = R√C: L.

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

  • Ce = C: (1 - 4Π 2 f 2 LC),

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f - это частота, L - индуктивность.

Значение индуктивности всегда должно учитываться при работе с Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида - апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

  • Lk = Lp + Lm + Lb,

где Lk показывает индуктивность устройства, Lp -пакета, Lm - главных шин, а Lb - индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc: n + µ0 l х d: (3b) + Lb,

где l - длина шин, b - ее ширина, а d - расстояние между шинами.

Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.



Понравилась статья? Поделитесь ей