Контакты

Запись f x обозначает выражение. Функция. Область определения и область значений функции. Графики функции. Основные элементарные функции. Их свойства и графики

Пусть y - некоторая функция переменной x ; причём, неважно, каким образом эта функция задана: формулой, таблицей или как-то иначе. Важен только сам факт существования этой функциональной зависимости, что записывается следующим образом: y = f (x ). Буква f (начальная буква латинского слова “functio”- функция) не обозначает какой-либо величины, так же как буквы log, sin, tan в записях функций y = log x , y = sin x , y = tan x . Они говорят лишь об определённых функциональных зависимостях y от x . Запись y = f (x ) представляет любую функциональную зависимость. Если две функциональные зависимости: y от x и z от t отличаются одна от другой, то они записываются с помощью различных букв: y = f (x ) и z = F (t ). Если же некоторые зависимости одни и те же, то они записываются одной и той же буквой f : y = f (x ) и z = f (t ). Если выражение для функциональной зависимости y = f (x ) известно, то она может быть записана с использованием обоих обозначений функции. Например, y = sin x или f (x ) = sin x . Обе формы полностью равносильны. Иногда используется и другая форма записи: y (x ). Это означает то же самое, что и y = f (x ).

Графическое представление функций.

Чтобы представить функцию y = f (x ) в виде графика, нужно:

1) Записать ряд значений функции и её аргумента в таблицу:

2) Перенести координаты точек функции из таблицы в систему координат,

отметив в соответствии с выбранным масштабом значения абсцисс на

оси Х и значения ординат на оси Y (рис.2). В результате в нашей системе

координат будет построен ряд точек A, B, C, . . . , F .

3) Соединяя точки A, B, C, . . . , F плавной кривой, получаем график заданной

функциональной зависимости.

Такое графическое представление функции даёт наглядное представление о характере её поведения, но достигаемая при этом точность недостаточна. Возможно, что промежуточные точки, не построенные на графике, лежат далеко от проведенной плавной кривой. Хорошие результаты в значительной степени зависят также от удачного выбора масштабов. Поэтому следует определить график функции как геометрическое место точек , координаты которых M (x, y) связаны заданной функциональной зависимостью .

Область определения и область значений функции. В элементарной математике изучаются функции только на множестве действительных чисел R . Это значит, что аргумент функции может принимать только те действительные значения, при которых функция определена, т.e. она также принимает только действительные значения. Множество X всех допустимых действительных значений аргумента x , при которых функция y = f (x ) определена, называется областью определения функции . Множество Y всех действительных значений y , которые принимает функция, называется областью значений функции . Теперь можно дать более точное определение функции: правило (закон) соответствия между множествами X и Y , по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y, называется функцией .

Если задано множество чисел X и указан способ f , по которому для каждого значения х ЄX ставится в соответствие только одно число у . Тогда считается заданной функция y = f (х ), у которой область определения X (обычно обозначают D (f ) = X ). Множество Y всех значений у , для которых есть как минимум одно значение х ЄX , такое, что y = f (х ), такое множество называют множеством значений функции f (чаще всего обозначают E (f )= Y ).

Или зависимость одной переменной у от другой х , при которой каждому значению переменной х из определенного множества D соответствует единственное значение переменной у , называется функцией .

Функциональную зависимость переменной у от х часто подчеркивают записью у(х), которую читают игрек от икс.

Область определения функции у (х ), т. е. множество значений ее аргумента х , обозначают символом D (y ), который читают дэ от игрек.

Область значений функции у (х ), т. е. множество значений, которые принимает функция у, обозначают символом Е (у ), который читают е от игрек.

Основными способами задания функции являются:

а) аналитический (с помощью формулы y = f (х )). К этому способу можно отнести и случаи, когда функция задается системой уравнений. Если функция задана формулой, то область ее определения составляют все те значения аргумента, при которых выражение, записанное в правой части формулы, имеет значения.

б) табличный (с помощью таблицы соответствующих значений х и у ). Таким способом часто задается температурный режим или курсы валют, но этот способ не такой наглядный, как следующий;

в) графический (с помощью графика). Это один из самых наглядных способов задания функции, поскольку по графику сразу "читаются" изменения. Если функция у (х ) задана графиком, то область ее определения D (y ) есть проекция графика на ось абсцисс, а область значений Е (у ) - проекция графика на ось ординат (смотри рисунок).

г) словестный . Этот способ часто применяется в задачах, а точнее в описании их условия. Обычно этот способ заменяют одним из приведенных выше.

Функции y = f (х ), x ЄX , и y = g (х ), x ЄX , называются тождественно равными на подмножестве М СX , если для каждого x 0 ЄМ справедливо равенство f (х 0) = g (х 0).

График функции y = f (х ) можно представить, как множество таких точек (х ; f (х )) на координатной плоскости, где х - произвольная переменная, из D (f ). Если f (х 0) = 0, где х 0 то точка с координатами (x 0 ; 0) - это точка, в которой график функции y = f (х ) пересекается с осью Оx . Если 0ЄD (f ), то точка (0; f (0)) - это точка, в которой график функции у = f (x ) пересекается с осью Оу .

Число х 0 из D (f ) функции y = f (х ) это нуль функции, тогда, когда f (х 0) = 0.

Промежуток М СD (f ) это промежуток знакопостоянства функции y = f (х ), если либо для произвольного x ЄМ верно f (х ) > 0, либо для произвольного х ЄМ верно f (х ) < 0.

Есть приборы , которые вырисовывают графики зависимостей между величинами. Это барографы - приборы для фиксации зависимости атмосферного давления от времени, термографы - приборы для фиксации зависимости температуры от времени, кардиографы - приборы для графической регистрации деятельности сердца. У термографа есть барабан, он равномерно вращается. Бумаги, намотанной на барабан, касается самописец, который в зависимости от температуры поднимается и опускается и вырисовывает на бумаге определенную линию.

От представления функции формулой можно перейти к ее представлению таблицей и графиком.

При изучении математики очень важно понимать, что такое функция, ее области определения и значения. С помощью исследования функций на экстремум можно решить многие задачи по алгебре. Даже задачи по геометрии иногда сводятся к рассмотрению уравнений геометрических фигур на плоскости.

На уроке закрепления знаний по алгебре в 7 классе по теме "ЧТО ОЗНАЧАЕТ В МАТЕМАТИКЕ ЗАПИСЬ y = f(x) " необходимо разъяснить смысл записи y = f (x ), понятий:

Скачать:


Подписи к слайдам:

Функция У=F(Х)и графики.Линейная функция.Квадратичная функция.
Исследование функций.
Траектория полета – парабола
Траектория движения кометв межпланетном пространстве – парабола
Парабола в архитектуре
Какие функции знаете?
а)
б)
в)
Графиком квадратичной функции является парабола
Прочти и вспомни, какие функции ты знаешь
Назови свойства этих функций
Графики каких функций составляют искомый график?
Свойства функции
1.Область определения: значение Х2.Наибольшее и наименьшее значение функции: У наиб.У наим.3.У=0 при Х4.У>0 при Х5.У №39.40 стр 180
Свойства
а) f(–1) = (–1)2 = 1; f(2) = 4; f(1) = 4 Ч 1 = 4; f(1,5) = 4; f(–2) = (–2)2 = 4.б) в) 1. Область определения функции [–2; 3];2. унаим. = 0 (достигается при х = 0);yнаиб. = 4 (достигается при х = – 2 и в любой точке полуинтервала , возрастает на отрезке и постоянна в полуинтервале ;

2. у наим. = 0 (достигается при х = 0);

y наиб. = 4 (достигается при х = – 2 и в любой точке полуинтервала , возрастает на отрезке и постоянна в полуинтервале $

Функция $f\left(x\right)=[x]$ - функция целой части числа. Она находится округлением числа (если оно само не целое) «в меньшую сторону».

Пример: $=2.$

Пример 2

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. Очевидно, что эта функция принимает только целые значения, то есть $\ E\left(f\right)=Z$
  3. $f\left(-x\right)=[-x]$. Следовательно, эта функция будет общего вида.
  4. $(0,0)$ -- единственная точка пересечения с осями координат.
  5. $f"\left(x\right)=0$
  6. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$.

Рисунок 2.

Функция $f\left(x\right)=\{x\}$

Функция $f\left(x\right)=\{x\}$ -- функция дробной части числа. Она находится «отбрасыванием» целой части этого числа.

Пример 3

Исследуем и построим график функции

Функция $f(x)=sign(x)$

Функция $f\left(x\right)=sign(x)$ -- сигнум-функция. Эта функция показывает, какой знак имеет действительное число. Если число отрицательно, то функция имеет значение $-1$. Если число положительно, то функция равняется единице. При нулевом значении числа, значение функции также будет принимать нулевое значение.

Понравилась статья? Поделитесь ей