Контакты

"Показательная функция. Функционально-графические методы решений уравнений, неравенств, систем". Функционально- графический метод решения уравнений Урок и презентация на тему

Точность такого решения невелика, однако с помощью графика можно разумно выбрать первое приближение, с которого начнется дальнейшее решение уравнения. Существуют два способа графического решения уравнений.

Первый способ . Все члены уравнения переносят в левую часть, т.е. уравнение представляют в виде f(x) = 0. После этого строят график функции y = f(x) , где f(x) - левая часть уравнения. Абсциссы точек пересечения графика функции y = f(x) с осью Ox и являются корнями уравнения, т.к. в этих точках y = 0 .

Второй способ . Все члены уравнения разбивают на две группы, одну из них записывают в левой части уравнения, а другую в правой, т.е. представляют его в виде j(x) = g(x). После этого строят графики двух функций y = j(x) и y = g(x). Абсциссы точек пересечения графиков этих двух функций и служат корнями данного уравнения. Пусть точка пересечения графиков имеет абсциссу x o , ординаты обоих графиков в этой точке равны между собой, т.е. j(x о) = g(x o). Из этого равенства следует, что x 0 - корень уравнения.

Отделение корней

Процесс нахождения приближенных значений корней уравнения разбивается на два этапа:

1) отделение корней;

2) уточнение корней до заданной точности.

Корень x уравнения f(x) = 0 считается отделенным на отрезке , если на этом отрезке уравнение f(x) = 0 не имеет других корней.

Отделить корни - это значит разбить всю область допустимых значений на отрезки, в каждом из которых содержится один корень.

Графический метод отделения корней - в этом случае поступают также, как и при графическом методе решения уравнений.

Если кривая касается оси абсцисс, то в этой точке уравнение имеет двукратный корень (например, уравнение x 3 - 3x + 2 = 0 имеет три корня: x 1 = -2 ; x 2 = x 3 = 1).

Если же уравнение имеет трехкратный действительный корень, то в месте касания с осью х кривая y = f(x) имеет точку перегиба (например, уравнение x 3 - 3x 2 + 3x - 1 = 0 имеет корень x 1 = x 2 = x 3 = 1).

Аналитический метод отделения корней . Для этого используют некоторые свойства функций.

Теорема 1 . Если функция f(x) непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков, то внутри отрезка существует по крайней мере один корень уравнения f(x) = 0.

Теорема 2. Если функция f(x) непрерывна и монотонна на отрезке и принимает на концах отрезка значения разных знаков, то внутри отрезка содержится корень уравнения f(x) = 0, и этот корень единственный.

Теорема 3 . Если функция f(x) непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков, а производная f "(x) сохраняет постоянный знак внутри отрезка, то внутри отрезка существует корень уравнения f(x) = 0 и притом единственный.

Если функция f(x) задана аналитически, то областью существования (областью определения) функции называется совокупность всех тех действительных значений аргумента, при которых аналитическое выражение, определяющее функцию, не теряет числового смысла и принимает только действительные значения.

Функция y = f(x) называется возрастающей , если с возрастанием аргумента значение функции увеличивается, и убывающей , если с возрастанием аргумента значение функции уменьшается.

Функция называется монотонной , если она в заданном промежутке либо только возрастает, либо только убывает.

Пусть на отрезке функция f(x) непрерывна и принимает на концах отрезка значения разных знаков, а производная f "(x) сохраняет постоянный знак на интервале . Тогда если во всех точках интервала первая производная положительна, т.е. f "(x)>0, то функция f(x) в этом интервале возрастает . Если же во всех точках интервала первая производная отрицательна, т.е. f "(x)<0, то функция в этом интервале убывает .

Пусть на отрезке функция f(x) имеет производную второго порядка, которая сохраняет постоянный знак на всем отрезке. Тогда если f ""(x)>0, то график функции является выпуклым вниз ; если же f ""(x)<0, то график функции является выпуклым вверх .

Точки, в которых первая производная функции равна нулю, а также те, в которых она не существует (например, обращается в бесконечность), но функция сохраняет непрерывность, называются критическими .

Порядок действий для отделения корней аналитическим методом:

1) Найти f "(x) - первую производную.

2) Составить таблицу знаков функции f(x), полагая х равным:

а) критическим значениям (корням) производной или ближайшим к ним;

б) граничным значениям (исходя из области допустимых значений неизвестного).

Пример . Отделить корни уравнения 2 х - 5х - 3 = 0.

Имеем f(x) = 2 x - 5x - 3 . Область определения функции f(x) - вся числовая ось.

Вычислим первую производную f "(x) = 2 x ln(2) - 5 .

Приравниваем эту производную нулю:

2 x ln(2) - 5 = 0 ; 2 x ln(2) = 5 ; 2 x = 5/ln(2) ; xlg(2) = lg(5) - lg(ln(2)) .

Составляем таблицу знаков функции f(x), полагая х равным: а) критическим значениям (корням производной) или ближайшим к ним; б) граничным значениям (исходя из области допустимых значений неизвестного):

Корни уравнения заключены в промежутках (-1,0) и (4,5).

Иванова Анастасия

Задание № 15 профильного экзамена по математике - это задание повышенного уровня сложности, представляющее неравенство. При решении этих неравенств учащиеся должны показать знания теорем о равносильности неравенств определенного вида, умения использовать стандартные и нестандартные методы решения. Анализ содержания школьных учебников показывает, что в большинстве из них методам решения неравенств с использованием свойств функций не уделяется должного внимания, а в заданиях ЕГЭ почти каждый год предлагаются неравенства, решение которых упрощается, если применить свойства функций. По статистике представленной на сайте Федерального института педагогических измерений в 2017 году ненулевые баллы за это задание получили около 15% участников экзамена; максимальный балл – около 11%. Всё отмеченное указывает на то, что учащиеся испытывают большие трудности при решении задания № 15 ЕГЭ. Цель : изучить различные способы решения неравенств.

:

1. Изучить теоретический материал по данной теме.

2. Рассмотреть примеры, предложенные в банке заданий ЕГЭ на сайте Федерального института педагогических измерений.

3. Изучить функционально-графические методы решения неравенств.

4. Сравнить различные методы решения неравенств.

5. Проверить экспериментальным путем какой способ решения неравенств наиболее рациональный.

Методы исследование: опрос, анкетирование, анализ, сравнение и обобщение результатов.

В своей работе мы изучили функционально-графические методы решения неравенств. Сравнили различные методы решения неравенств. Проверили экспериментальным путем какой способ решения неравенств наиболее рациональный. И пришли к выводу, что учащийся должен владеть несколькими способами решения неравенств, для того чтобы сэкономить время и снизить риск логических и вычислительных ошибок.

Скачать:

Предварительный просмотр:

Исследование различных методов решения неравенств

Иванова Анастасия Евгеньевна

Муниципальное бюджетное общеобразовательное учреждение
"Средняя школа №30 с углубленным изучением отдельных предметов"

11б класс

Научная статья (описание работы)

1. Введение

Актуальность.

Задание № 15 профильного экзамена по математике - это задание повышенного уровня сложности, представляющее неравенство (рациональное, иррациональное, показательное, логарифмическое). При решении этих неравенств учащиеся должны показать знания теорем о равносильности неравенств определенного вида, умения использовать стандартные и нестандартные методы решения.

Полное правильное решение этого задания оценивается 2 баллами. При решении задачи допустимы любые математические методы - алгебраический, функциональный, графический, геометрический и др.

По статистике представленной на сайте Федерального института педагогических измерений в 2017 году ненулевые баллы за это задание получили около 15% участников экзамена; максимальный балл – около 11%. Типичные ошибки связаны с невнимательным чтением математической записи неравенства, непониманием алгоритма решения совокупностей и систем логарифмических неравенств. Очень много ошибок допущено участниками экзамена при решении дробно-рационального неравенства (забыт знаменатель) .

Результаты выполнения задания № 15 обучающимися нашей школы на ЕГЭ по математике представлены в таблице 1 и на диаграмме (рис. 1).

Таблица 1

Результаты выполнения задания № 15 обучающимися нашей школы

Рис.1. Результаты выполнения задания № 15 обучающимися нашей школы

Результаты выполнения задания № 15 на пробном городском экзамене 11а,б классов в 2017-2018 уч. году представлены в таблице 2 и на диаграмме (рис.2).

Таблица 2

Результаты выполнения задания № 15 на пробном городском экзамене

в 2017-2018 уч. году обучающимися нашей школы

Рис.2. Результаты выполнения задания № 15 на пробном экзамене в 2017-2018 уч. году обучающимися нашей школы

Мы провели опрос учителей математики нашей школы и выявили основные проблемы, которые возникают у учащихся при решении неравенств: неверное нахождение области допустимых значений неравенств; рассмотрение не всех случаев перехода от логарифмического неравенства к рациональному; преобразование логарифмических выражений; ошибки в использовании метода интервалов и др.

С применением метода интервалов и введением вспомогательной переменной связан ряд типичных ошибок. Так например, ошибка при определении знаков на промежутках или неправильное расположение чисел на координатной прямой, согласно критериям, могут трактоваться как вычислительные ошибки. Другие, связанные с пропуском шагов алгоритма или неверным их выполнением оцениваются 0 баллом.

Всё отмеченное указывает на то, что учащиеся испытывают большие трудности при решении задания № 15 ЕГЭ по математике. В связи с этим нами была выдвинута гипотеза : если ученик будет владеть несколькими способами решения неравенств, то он сможет выбрать наиболее рациональный.

Объект исследования : неравенства.

Предмет исследования : различные способы решения неравенств.

Цель : изучить различные способы решения неравенств.

Для достижения поставленной цели решались следующие задачи :

  1. Изучить теоретический материал по данной теме.
  2. Рассмотреть примеры, предложенные в банке заданий ЕГЭ на сайте Федерального института педагогических измерений.
  3. Изучить функционально-графические методы решения неравенств.
  4. Сравнить различные методы решения неравенств.
  5. Проверить экспериментальным путем какой способ решения неравенств наиболее рациональный.

2. Основная часть

2.1. Теоретическая часть

1. Линейные неравенства

Линейные неравенства - это неравенства вида: ax + b 0; ax+b≥0; ax+b≤0, где a и b – любые числа, причем a≠0, x - неизвестная переменная.

Правила преобразования неравенств:

1. Любой член неравенства можно переносить из одной части неравенства в другую, меняя при этом знак на противоположный.

2. Обе части неравенства можно умножить/разделить на одно и то же положительное число, при этом получится неравенство, равносильное данному.

3. Обе части неравенства можно умножить/разделить на одно и то же отрицательное число, меняя знак неравенства на противоположный.

2. Квадратные неравенства

Неравенство вида

где x - переменная, a, b, c - числа, , называется квадратным. При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0 , квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D квадратное уравнение не имеет корней. В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции (Приложение 1).

3. Рациональные неравенства

Рациональным неравенством с одной переменной x называют неравенство вида f(x) выражения, т.е. алгебраические выражения, составленные из чисел, переменной x и с помощью математических действий, т.е. операций сложения, вычитания, умножения, деления и возведения в натуральную степень. Алгоритм решения рациональных неравенств методом интервалов (Приложение 1).

4. Показательные неравенства

Показательное неравенство – это неравенство , в котором неизвестное находится в показателе степени. Простейшее показательное неравенство имеет вид:а х ‹ b или а х › b, где а> 0, а ≠ 1, х – неизвестное.

5. Логарифмические неравенства

Логарифмическим неравенством называется неравенство, в котором неизвестная величина стоит под знаком логарифма .

1. Неравенство в случае, если сводится к равносильному неравенству . Если же - то к неравенству .

Аналогично неравенство равносильно неравенствам для : ; для : .

Решения полученных неравенств надо пересечь с ОДЗ:

2. Решение логарифмического неравенства вида равносильно решению следующих систем:

а) б)

Неравенство в каждом из двух случаев сводится к одной из систем:

а) б)

6. Иррациональные неравенства

Если в неравенство входят функции под знаком корня, то такие неравенства называют иррациональными .

.

2.2. Практическая часть

Исследование № 1

Цель : изучить метод ограниченности функций.

Ход работы:

1. Изучить метод ограниченности функций.

2. Решить неравенства данным методом.

Для использования ограниченности функции необходимо уметь находить множество значений функции и знать оценки области значений стандартных функций (например, ) .

Пример № 1 . Решить неравенство:

Решение:

Область определения:

Для всех х из полученного множества имеем:

Следовательно, решение неравенства

Ответ:

Пример №2. Решить неравенство:

Решение:

Т.к.

Данное неравенство равносильно

Первое уравнение системы имеет один корень х = - 0,4, который удовлетворяет и второму уравнению.

Ответ: - 0,4

Вывод: данный метод наиболее эффективен, если в неравенстве содержатся такие функции, как и другие, области значений которых ограничены сверху или снизу.

Исследование № 2

Цель : изучить метод рационализации решения неравенств.

Ход работы:

1. Изучить метод рационализации.

2. Решить неравенства данным методом.

Метод рационализации заключается в замене сложного выражения F(x) на более простое выражение G(x), при которой неравенство G(x) v 0 равносильно неравенству F(x) v 0 на области определения выражения F(x) (символ "v" заменяет один из знаков неравенств: ≤, ≥, >,

Выделим некоторые типовые выражения F и соответствующие им рационализирующие выражения G (таблица 1), где f, g, h, p, q - выражения с переменной х (h>0, h≠1,f>0,g>0), a-фиксированное число (а>0, a≠1). (Приложение 2).

Пример № 1. Решить неравенство:

О.Д.З:

Ответ:

Пример № 2. Решить неравенство:

О.Д.З:

Учитывая область определения, получим

Ответ:

Вывод : неравенства с логарифмами по переменному основанию вызывают наибольшую сложность. Метод рационализации позволяет перейти от неравенства, содержащего сложные показательные, логарифмические и т.п. выражения, к равносильному ему более простому рациональному неравенству. Метод рационализации позволяет не только сэкономить время, но и снизить риск логических и вычислительных ошибок.

Исследование № 3

Цель : в процессе решения неравенств сравнить различные методы.

Ход работы:

1. Решить неравенство разными методами.

2. Сравнить результаты и сделать вывод.

Пример № 1. Решить неравенство

Решение:

1 способ. Алгебраический метод

Решение первой системы:

Решаем второе неравенство второй системы:

2 способ . Использование области определения функции

Область определения:

Для этих значений х получаем:

Правая часть неравенства отрицательна на его области определения. Следовательно, неравенство справедливо при

Ответ:

3 способ. Графический метод

Вывод : решая неравенство алгебраическим методом я пришла к неравенству шестой степени, потратила много времени на его решение, но так и не смогла решить. Рациональный метод, по моему мнению, использование области определения функции или графический.

Пример № 2. Решить неравенство: .

Ответ:

Вывод: решить данное неравенство у меня получилось лишь благодаря методу рационализации.

Заключение

Анализ содержания школьных учебников показывает, что в большинстве из них методам решения неравенств с использованием свойств функций не уделяется должного внимания, а в заданиях ЕГЭ почти каждый год предлагаются неравенства, решение которых упрощается, если применить свойства функций.

Большинство учащихся решают неравенства с использованием стандартных, алгоритмических методов, что иногда приводит к громоздким вычислениям. В связи с этим процент выполнения задания № 15 на ЕГЭ невысок.

Область применения свойств функций при решении неравенств очень широка. Использование свойств (ограниченность, монотонность и др.) функций, входящих в неравенства, позволяет применить нестандартные методы решения. По нашему мнению, умение использовать необходимые свойства функций при решении неравенств могут позволить учащимся выбирать более рациональный способ решения.

В своей работе мы изучили функционально-графические методы решения неравенств. Сравнили различные методы решения неравенств. Проверили экспериментальным путем какой способ решения неравенств наиболее рациональный.

И пришли к выводу, что учащийся должен владеть несколькими способами решения неравенств, для того чтобы сэкономить время и снизить риск логических и вычислительных ошибок.

Задачи нашей работы выполнены, цель достигнута, гипотеза подтвердилась.

Литература:

  1. Алимов Ш. А, Колягин Ю. М., Сидоров Ю. В. и др. Алгебра и начала анализа: Учебник для 10-11 кл. общеобразоват. учреждений / Ш. А. Алимов, Ю. М. Колягин, Ю. В. Сидоров и др. – 15-е изд. – М.: Просвещение, 2007. – 384 с.
  2. Корянов А.Г., Прокофьев А.А. Материалы курса «Готовим к ЕГЭ хорошистов и отличников»: лекции 1-4. - М.: Педагогический университет «Первое сентября», 2012. – 104 с.
  3. Сайт http://www.fipi.ru/.
  4. Сайт https://ege.sdamgia.ru/.
  5. Ященко И. В. ЕГЭ. Математика. Профильный уровень: типовые экзаменационные варианты: 36 вариантов / под ред. И. В. Ященко. - М.: Издательство «Национальное образование», 2018. - 256 с.
Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследование различных методов решения неравенств Иванова Анастасия Евгеньевна МБОУ «СШ № 30 с углубленным изучением отдельных предметов»

Результаты выполнения задания № 15 обучающимися нашей школы

Результаты выполнения задания № 15 на пробном экзамене в 2017-2018 уч. году обучающимися нашей школы

Гипотеза: если ученик будет владеть несколькими способами решения неравенств, то он сможет выбрать наиболее рациональный Объект исследования: неравенства Предмет исследования: различные способы решения неравенств

Цель: изучить различные способы решения неравенств. Для достижения поставленной цели решались следующие задачи: Изучить теоретический материал по данной теме. Рассмотреть примеры, предложенные в банке заданий ЕГЭ на сайте Федерального института педагогических измерений. Изучить функционально-графические методы решения неравенств. Сравнить различные методы решения неравенств. Проверить экспериментальным путем какой способ решения неравенств наиболее рациональный.

Исследование № 1 Цель: изучить метод ограниченности функций. Ход работы: 1. Изучить метод ограниченности функций. 2. Решить неравенства данным методом. Пример № 1 . Решить неравенство: Решение: Область определения: Для всех х из полученного множества имеем: Следовательно, решение неравенства Ответ:

Пример №2. Решить неравенство: Решение: Т.к. Данное неравенство равносильно Первое уравнение системы имеет один корень х = - 0,4, который удовлетворяет и второму уравнению. Ответ: - 0,4 Вывод: данный метод наиболее эффективен, если в неравенстве содержатся такие функции, как и другие, области значений которых ограничены сверху или снизу.

Исследование № 2 Цель: изучить метод рационализации решения неравенств. Ход работы: 1. Изучить метод рационализации. 2. Решить неравенства данным методом. Пример № 1. Решить неравенство: О.Д.З: Учитывая область определения, получим Ответ:

Пример № 2. Решить неравенство: О.Д.З: Учитывая область определения, получим Ответ: Вывод: неравенства с логарифмами по переменному основанию вызывают наибольшую сложность. Метод рационализации позволяет перейти от неравенства, содержащего сложные показательные, логарифмические и т.п. выражения, к равносильному ему более простому рациональному неравенству. Метод рационализации позволяет не только сэкономить время, но и снизить риск логических и вычислительных ошибок.

Исследование № 3 Цель: в процессе решения неравенств сравнить различные методы. Ход работы: 1. Решить неравенство разными методами. 2. Сравнить результаты и сделать вывод. Пример № 1. Решить неравенство 1 способ. Алгебраический метод Решение первой системы: Решаем второе неравенство второй системы: 2 способ. Использование области определения функции Область определения: Для этих значений х получаем: Правая часть неравенства отрицательна на его области определения. Следовательно, неравенство справедливо при

3 способ. Графический метод Вывод: решая неравенство алгебраическим методом я пришла к неравенству шестой степени, потратила много времени на его решение, но так и не смогла решить. Рациональный метод, по моему мнению, использование области определения функции или графический.

Пример № 2. Решить неравенство: Ответ: Вывод: решить данное неравенство у меня получилось лишь благодаря методу рационализации.

Область применения свойств функций при решении неравенств очень широка. Использование свойств (ограниченность, монотонность и др.) функций, входящих в неравенства, позволяет применить нестандартные методы решения. По нашему мнению, умение использовать необходимые свойства функций при решении неравенств могут позволить учащимся выбирать более рациональный способ решения. В своей работе мы изучили функционально-графические методы решения неравенств. Сравнили различные методы решения неравенств. Проверили экспериментальным путем какой способ решения неравенств наиболее рациональный. И пришли к выводу, что учащийся должен владеть несколькими способами решения неравенств, для того чтобы сэкономить время и снизить риск логических и вычислительных ошибок. Задачи нашей работы выполнены, цель достигнута, гипотеза подтвердилась.

Спасибо за внимание!

Разделы: Математика

Класс: 11

  • Систематизировать, обобщить, расширить знания, умения учащихся, связанные с применением функционально-графического метода решения уравнений
  • Отработка навыков решения уравнений функционально-графическим методом.
  • Формирование логического мышления, умения самостоятельно и нестандартно мыслить.
  • Развивать коммуникативные навыки в процессе групповой работы.
  • Осуществлять продуктивное взаимодействие в группе для достижения максимального общего результата.
  • Отработка умений слушать товарища. Анализировать его ответ и задавать воросы.

Для проведения этого урока в классе организовались группы ребят, которые получила вспомнить определённый метод решения уравнений, подобрать 5-8 уравнений, решить их и подготовить презентацию.

Оборудование: Компьютер, проектор. Презентация .

В презентацию учителя были вставлены презентации ребят, но у них разный фон.

Ход урока

Сегодня на уроке мы вспомним функционально - графический метод решения уравнений, рассмотрим когда он применяется, какие трудности могут возникнуть при решении и будем выбирать методы решения уравнений.

Вспомним основные методы решения уравнений .(слайд № 2)

Первая группа разбирает графический метод.

Вторая группа рассказывает о методе мажорант.

Метод мажорант - метод нахождения ограниченности функции.

Мажорирование - нахождение точек ограничения функции. М - мажоранта.

Если имеем f(x) = g(x) и известно ОДЗ, и если

.№1 Решите уравнение:

,

х = 4 - решение уравнения.

№2 Решить уравнение

Решение: Оценим правую и левую части уравнения:

а) , так как , а ;

б) , так как .

Оценка частей уравнения показывает, что левая часть не меньше, а правая не больше двух при любых допустимых значениях переменной x. Следовательно, данное уравнение равносильно системе

Первое уравнение системы имеет только один корень х=-2. Подставляя это значение во второе уравнение, получаем верное числовое равенство:

Ответ: х=-2.

Третья группа объясняет использование теоремы об единственности корня.

Если одна из функций(F(x)) убывает, а другая (G(x))возрастает на некоторой области определения, то уравнение F(x)=G(x) имеет не более одного решения.

№1 Решить уравнение

Решение: область определения данного уравнения x>0. Исследуем на монотонность функции . Первая из них - убывающая (так как это - логарифмическая функция с основанием больше нуля, но меньше единицы), а вторая - возрастающая (это линейная функция с положительным коэффициентом при х). Подбором легко находится корень уравнения х=3, который является единственным решением данного уравнения.

Ответ: х=3.

Учитель напоминает. где ещё используется монотонность функции при решении уравнений.

А) - От уравнения вида h(f(x))=h(g(x)) переходим к уравнению вида f(x)=g(x)

При монотонности функции

№5 sin (4x+?/6) = sin 3x

НЕВЕРНО!(функция периодическая). И тут же проговариваем правильный ответ.

НЕВЕРНО!(четная степень) И тут же проговариваем правильный ответ:

Б) Метод использования функциональных уравнений.

Теорема. Если функция y = f(x) - возрастающая (или убывающая) функция на области допустимых значений уравнения f(g(x)) = f(h(x)), то уравнения f(g(x)) = f(h(x)) и g(x)=f(x) равносильны.

№1 Решить уравнение:

Рассмотрим функциональное уравнение f(2x+1) = f(-x), где f(x) = f()

Найдите производную

Определите её знак.

Т.к. производная всегда положительная, то функция возрастающая на всей числовой прямой, то мы переходим к уравнению

Решите уравнение. Х 6 - |13 + 12х| 3 = 27соs х 2 - 27соs(13 + 12x).

1) уравнение приводится к виду

х6 - 27соs x2 = |13 + 12x|3 - 27соs(13 + 12x),

f(x2) = f(13 + 12x),

где f(t) = |t|3-27соst;

2)Функция f - четная и при t > 0 имеет следующую производную

f"(t)= поэтому f"(t)> 0 при всех

Следовательно, функция f возрастает на положительной полуоси, а значит, каждое свое значение она принимает ровно в двух симметричных относительно нуля точках Данное уравнение равносильно

следующей совокупности:

Ответ: -1, 13, -6+?/23.

Задания для решения на уроке. Ответ

Рефлексия.

1. Что нового узнали?

2. С каким методом лучше справляетесь?

Дом задание: Подобрать по 2 уравнения на каждый метод и их решить.

Понравилась статья? Поделитесь ей