Контакты

Самодельный сварочный инвертор своими руками. Как сделать недорогой инвертор сварочный своими руками. Сварочный инвертор своими руками: схемы и инструкция по сборке

Конструктор и знаменитый ученый Юрий Негуляев в свое время изобрел практически незаменимое устройство – сварочный инвертор. Предлагаем рассмотреть, как своими руками сделать сварочный инвертор с применением импульсного трансформатора и мощных MOSFET транзисторов.

Самая важное при конструировании или ремонте покупного или самодельного инвертора – его принципиальная электрическая схема. Её мы для изготовления своего инвертора взяли именно из проекта Негуляева.

Изготовление трансформатора и дросселя

Для работы нам понадобится следующее оборудование:

  1. Ферритовый сердечник.
  2. Каркас для трансформатора.
  3. Медная шина или провод.
  4. Скоба для фиксации двух половинок сердечника.
  5. Термостойкая изоляционная лента.

Для начала нужно запомнить простое правило : обмотки наматываются только на полную ширину каркаса, при такой конструкции трансформатор становится более устойчив к перепадам напряжения и внешним воздействиям.

Качественный импульсный трансформатор наматывается медной шиной или пучком проводов. Алюминиевые провода такого же сечения не способны выдержать достаточно большую плотность тока в инверторе.

В этом варианте исполнения трансформатора, вторичную обмотку нужно наматывать в несколько слоев, по принципу бутерброда. Пучок проводов сечением 2 мм, скрученных вместе, будет служить вторичной обмоткой. Они должны быть изолированы друг от друга, например, лаковым покрытием.


Кольца обмоток

Между первичной и вторичной обмоткой изоляции должно быть в два или три раза больше, чтобы на вторичную обмотку не попало сетевое напряжение, которое в выпрямленном виде составляет 310 вольт. Для этого лучше всего подходит фторопластовая термостойкая изоляция.

Трансформатор можно выполнить и не на стандартном сердечнике, применив для этих целей 5 трансформаторов от строчной развертки неисправных телевизоров, объединенных в один общий сердечник. Так же необходимо помнить и про воздушный зазор между обмотками и сердечником трансформатора, это облегчает его охлаждение.

Важное замечание, бесперебойная работа устройства напрямую зависит не только от величины постоянного тока, но и от толщины провода вторичной обмотки трансформатора. То есть, если намотать обмотку толще, чем 0,5 мм, мы получим скин-эффект, который не очень хорошо сказывается на режиме работы и тепловых характеристиках трансформатора.

Так же на ферритовом сердечнике изготавливается и трансформатор тока, который после будет закреплен на положительном силовом проводе, выводы с этого трансформатора приходят на плату управления для отслеживания и стабилизации выходного тока.

Для уменьшения пульсации на выходе аппарата и меньшему количеству выбросов помех в сеть питания используется дроссель. Его так же наматывают на ферритовом каркасе произвольного исполнения, проводом или шиной, толщина которого соответствует толщине провода вторичной обмотки.

Конструкция сварочного аппарата

Рассмотрим, как в домашних условиях сконструировать достаточно мощный импульсный сварочный инвертор.

Если повторять конструкцию по системе Негуляева, то транзисторы прикручиваются к радиатору специально вырезанной для этого пластиной, таким образом улучшается передача тепла от транзистора к радиатору. Между радиатором и транзисторами необходимо проложить термопроводящую, не пропускающую ток прокладку. Это обеспечивает защиту от короткого замыкания между двух транзисторов.

Выпрямительные диоды крепятся к алюминиевой пластине толщиной 6 мм, крепление осуществляется таким же способом, как и крепление транзисторов. Их выходы соединяться между собой неизолированным проводом сечением 4 мм. Следует соблюдать осторожность, провода не должны соприкасаться.

Дроссель к основанию сварочного аппарата крепится железной пластиной, размеры которой повторяют форму самого дросселя. Для уменьшения вибрации, между дросселем и корпусом прокладывают резиновый уплотнитель.

Видео: сварочный инвертор своими руками

Все силовые проводники внутри корпуса инвертора нужно развести в разные стороны, иначе существует возможность короткого замыкания. Вентилятор охлаждает несколько радиаторов одновременно, каждый из которых предназначен для своей части схемы. Такая конструкция позволяет обойтись всего одним вентилятором, установленным на задней стенке корпуса, что значительно экономит место.

Для охлаждения самодельного сварочного инвертора можно использовать вентилятор от компьютерного корпуса, он оптимально подходит как по габаритам, так и по мощности. Так как вентиляция вторичной обмотки играет большую роль, это следует учитывать при его расположении.


Схема: разобранный сварочный инвертор

Вес такого инвертора будет колебаться от 5 до 10 кг, при этом его сварочный ток может быть в пределах от 30 до 160 ампер.


Как настраивать работу инвертора

Сделать самодельный сварочный инвертор, это не так уж и сложно, тем более что это почти полностью бесплатное изделие, если не считать расходы на некоторые детали и материалы. Но для настройки собранного устройства может понадобиться помощь специалистов. Как это можно сделать самому?

Инструкция облегчающая самостоятельную настройку сварочного инвертора:

  1. Для начала нужно подать сетевое напряжение на плату инвертора, после чего блок начнет издавать характерный писк импульсного трансформатора. Также напряжение подается на охлаждающий вентилятор, это не даст перегреваться конструкции и работа аппарата будет намного стабильнее.
  2. После того, как силовые конденсаторы полностью зарядились от сети, нам нужно замкнуть токоограничивающий резистор в их цепи. Для этого нужно проверить работу реле, убедившись, что напряжение на резисторе равно нулю. Помните, если провести подключение инвертора без токоограничивающего резистора, то может случиться взрыв!
  3. Применение такого резистора значительно уменьшает скачки тока во время включения сварочного аппарата в сеть 220 вольт.
  4. Наш инвертор способен вырабатывать ток свыше 100 ампер, это значение зависит от конкретной схемы, примененной в разработке. Узнать данное значение не сложно при помощи осциллографа. Нужно замерить периодичность поступающих импульсов на трансформатор, они должны составлять соотношения 44 и 66 процентов.
  5. Режим сварки, проверяется непосредственно на блоке управления, подключив вольтметр к выходу усилителя оптрона. Если инвертор маломощный, среднее амплитудное напряжение должно составлять около 15 вольт.
  6. Затем проверяется правильность сборки выходного моста, для этого на вход инвертора подается напряжение 16 вольт от любого подходящего блока питания. На холостом ходу блок потребляет ток около 100 мА, это необходимо учитывать при проведении контрольных замеров.
  7. Для сравнения можно проверить работу промышленного инвертора. При помощи осциллографа измеряют импульсы на обоих обмотках, они должны соответствовать друг другу.
  8. Теперь необходимо проконтролировать работу сварочного инвертора с подключенными силовыми конденсаторами. Меняем напряжение питания с 16 вольт на 220 вольт, подключая аппарат непосредственно к электрической сети. При помощи осциллографа, подключенного к выходным MOSFET транзисторам, контролируем форму сигнала, она должна соответствовать испытаниям на пониженном напряжении.

Видео: сварочный инвертор на ремонте.

Сварочный инвертор – это очень популярный и необходимый аппарат, в любой деятельности, как на промышленных предприятиях, так и в домашнем хозяйстве. Кроме того, за счет применения встроенного выпрямителя и регулятора тока, с помощью такого сварочного инвертора можно добиться лучших результатов сварки по сравнению с результатами, которых можно достичь при пользовании традиционными аппаратами, трансформаторы которых выполнены из электротехнической стали.

Чтобы подключить к бортовой электросистеме автомобиля бытовые устройства требуется инвертор, который сможет повысить напряжение с 12 В до 220 В. На полках магазинов они имеются в достаточном количестве, но не радует их цена. Для тех, кто немного знаком с электротехникой есть возможность собрать преобразователь напряжения 12 220 вольт своими руками. Две простые схемы мы разберем.

Преобразователи и их типы

Есть три типа преобразователей 12-220 В. Первый — из 12 В получают 220 В. Такие инверторы популярный у автомобилистов: через них можно подключать стандартные устройства — телевизоры, пылесосы и т.д. Обратное преобразование — из 220 В в 12 — требуется нечасто, обычно в помещениях с тяжелыми условиями эксплуатации (повышенная влажность) для обеспечения электробезопасности. Например, в парилках, бассейнах или ванных. Чтобы не рисковать, стандартное напряжение в 220 В понижают до 12, используя соответствующее оборудование.

Третий вариант — это, скорее, стабилизатор на базе двух преобразователей. Сначала стандартные 220 В преобразуются в 12 В, затем обратно в 220 В. Такое двойное преобразование позволяет иметь на выходе идеальную синусоиду. Такие устройства необходимы для нормальной работы большинства бытовой техники с электронным управлением. Во всяком случае, при установке настоятельно советуют запитать его именно через такой преобразователь — его электроника очень чувствительная к качеству питания, а замена платы управления стоит примерно как половина котла.

Импульсный преобразователь 12-220В на 300 Вт

Эта схема проста, детали доступны, большинство из них можно извлечь из блока питания для компьютера или купить в любом радиотехническом магазине. Достоинство схемы — простота реализации, недостаток — неидеальная синусоида на выходе и частота выше стандартных 50 Гц. То есть, к данному преобразователю нельзя подключать устройства, требовательные к электропитанию. К выходу напрямую можно подключать не особ чувствительные приборы — лампы накаливания, утюг, паяльник, зарядку от телефона и т.п.

Представленная схема в нормальном режиме выдает 1,5 А или тянет нагрузку 300 Вт, по максимуму — 2,5 А, но в таком режиме будут ощутимо греться транзисторы.

Построена схема на популярном ШИМ-контроллере TLT494. Полевые транзисторы Q1 Q2 надо размещать на радиаторах, желательно — раздельных. При установке на одном радиаторе, под транзисторы уложить изолирующую прокладку. Вместо указанных на схеме IRFZ244 можно использовать близкие по характеристикам IRFZ46 или RFZ48.

Частота в данном преобразователе 12 В в 220 В задается резистором R1 и конденсатором C2. Номиналы могут немного отличаться от указанных на схеме. Если у вас есть старый нерабочий беспербойник для компьютера, а в нем — рабочий выходной трансформатор, в схему можно поставить его. Если трансформатор нерабочий, из него извлечь ферритовое кольцо и намотать обмотки медным проводом диаметром 0,6 мм. Сначала мотается первичная обмотка — 10 витков с выводом от середины, затем, поверх — 80 витков вторичной.

Как уже говорили, такой преобразователь напряжения 12-220 В может работать только с нагрузкой, нечувствительной к качеству питания. Чтобы была возможность подключать более требовательные устройства, на выходе устанавливают выпрямитель, на выходе которого напряжение близко к нормальному (схема ниже).

В схеме указаны высокочастотные диоды типа HER307, но их можно заменить на серии FR207 или FR107. Емкости желательно подобрать указанной величины.

Инвертор на микросхеме

Этот преобразователь напряжения 12 220 В собирается на основе специализированной микросхемы КР1211ЕУ1. Это генератор импульсов, которые снимаются с выходов 6 и 4. Импульсы противофазные, между ними небольшой временной промежуток — для исключения одновременного открытия обоих ключей. Питается микросхема напряжением 9,5 В, который задается параметрическим стабилизатором на стабилитроне Д814В.

Также в схеме присутствуют два полевых транзистора повышенной мощности — IRL2505 (VT1 и VT2). Они имеют очень низкое сопротивление открытого выходного канала — около 0,008 Ом, что сравнимо с сопротивлением механического ключа. Допустимый постоянный ток — до 104 А, импульсный — до 360 А. Подобные характеристики реально позволяют получить 220 В при нагрузке до 400 Вт. Устанавливать транзисторы необходимо на радиаторы (при мощности до 200 Вт можно и без них).

Частота импульсов зависит от параметров резистора R1 и конденсатора C1, на выходе установлен конденсатор C6 для подавления высокочастотных выбросов.

Трансформатор лучше брать готовый. В схеме он включается наоборот — низковольтная вторичная обмотка служит как первичная, а напряжение снимается с высоковольтной вторичной.

Возможные замены в элементной базе:

  • Указанный в схеме стабилитрон Д814В можно заменить любым, выдающим 8-10 V. Например, КС 182, КС 191, КС 210.
  • Если нет конденсаторов C4 и C5 типа К50-35 на 1000 мкФ, можно взять четыре 5000 мкФ или 4700 мкФ и включить их параллельно,
  • Вместо импортного конденсатора C3 220m можно поставить отечественный любого типа на 100-500 мкФ и напряжение не ниже 10 В.
  • Трансформатор — любой с мощностью от 10 W до 1000 W, но его мощность должна быть минимум в два раза выше планируемой нагрузки.

При монтаже цепей подключения трансформатора, транзисторов и подключения к источнику 12 В надо использовать провода большого сечения — ток тут может достигать высоких значений (при мощности в 400 Вт до 40 А).

Инвертор с чистым синусом а выходе

Схемы денных преобразователей сложны даже для опытных радиолюбителей, так что сделать их своими руками совсем непросто. Пример самой простой схемы ниже.

В данном случае проще собрать подобный преобразователь из готовых плат. Как — смотрите в видео.

В следующем ролике рассказано как собирать преобразователь на 220 вольт с чистым синусом. Только входное напряжение не 12 В, а 24 В.

А в этом видео как раз рассказано, как можно менять входное напряжение, но получать на выходе требуемые 220 В.

Сварочный инвертор – это достаточно популярный аппарат, который является необходимым и в домашнем хозяйстве, и на промышленном предприятии. Это не удивительно, ведь те источники питания, которыми пользовались раньше (преобразователи, трансформаторы, выпрямители), обладали многими недостатками. Среди них можно назвать массу и габариты, большую энергоемкость, но маленький диапазон регулирования режима сварки и низкую частоту преобразования. Сделав своими руками сварочный инвертор на тиристорах, вы получите мощный блок питания для необходимых работ. Также это поможет существенно сэкономить вам средства, хотя все равно потребует определенных трудовых и материальных затрат.

Сварочный инвертор: особенности и функции аппарата

Работа инвертора заключается в том, чтобы преобразовывать переменный сетевой ток в его постоянный высокочастотный аналог.

Это происходит в несколько этапов. К выпрямительному блоку из сети идет ток. Там, после трансформации, напряжение из переменного становится постоянным. А инвертор производит обратное преобразование, то есть поступающее постоянное напряжение снова становится переменным, но с уже более высокой частотой. После этого напряжение понижается трансформатором, через выходной выпрямитель происходит модификация этого параметра в высокочастотное постоянное напряжение.

Конструкция сварочного инвертора и его особенности

Благодаря тому что в конструкции аппарата отсутствуют тяжелые детали, он является очень компактным и легким. В нее входят следующие составляющие:

Устройство простого инвертора с перекрестными связями.

  • инвертор;
  • сетевой и выходной выпрямители;
  • дроссель;
  • высокочастотный трансформатор.

Даже начинающие сварщики могут работать с такими аппаратами. Их применяют как в быту, так и в строительной сфере или в автосервисах. Благодаря тому что присутствует регулировка рабочих режимов, варить можно и тонкие, и толстые металлы. А повышенные условия горения дуги и формирования сварного шва дают вам возможность варить сварочными инверторами любые сплавы, черные и цветные металлы, используя все возможные технологии их сварки.

Преимущества использования инвертора

В области сварного оборудования такие аппараты пользуются особым спросом из-за множества своих преимуществ и достоинств. Сделав инвертор своими руками, вы получите:

  • возможность варить сложные цветные металлы и конструкционные стали;
  • защиту от перегревов, колебаний сетевого напряжения, перегрузов по току;
  • высокую стабильность сварного тока даже при том, что напряжение может колебаться в сети;
  • качественно сформированный шов;
  • при сварке практически не будет разбрызгивания;
  • горение дуги будет стабилизированным в заданном ключе, даже если наблюдается внешнее неблагоприятное воздействие;
  • многие другие полезные в работе функции.

Схемы инвертора своими руками

Взяв за основу то, как строится схема и как управляется сам процесс инверторного преобразования, выделяют несколько видов аппаратов, которые являются самыми распространенными в использовании. Варианты полного моста и полумоста относятся к двум двухтактным схемам, а «косой» мост – к однотактной. Схема полного моста, которую называют двухтактной, работает с двухполярными импульсами. Они подаются на ключевые транзисторы (которые являются парными), а те запирают и открывают электрическую цепь.

Схема инвертора “косой” мост.

Полумостовая схема будет отличаться от предыдущего варианта тем, что потребление тока у нее повышенное. Как ключи выступают транзисторы, работающие по той же двухтактной модели. На каждый из них подается половина входного напряжения сети. Мощность инвертора, в сравнении по току с полным мостом, составляет половину значения. Подобная схема имеет свои преимущества в маломощных устройствах. К тому же можно использовать группу транзисторов, а не один очень мощный.

Последний вариант – «косой» мост. Это инверторы, которые работают по однотактному принципу. Тут вы будете иметь дело с однополярными импульсами. Одновременное открытие транзисторных ключей исключит возможность короткого замыкания. Но среди недостатков этой схемы выделяют подмагничивание магнитопровода трансформатора.

Посмотрите на одну из стандартных схем инвертора. Это конструкция по проекту Ю.Негуляева. Чтобы собрать такой аппарат в домашних условиях, потребуется ваше желание, готовность к работе и необходимая элементная база, которую вы сможете либо найти на радиорынке, либо выпаять из старой бытовой техники.

Инструкция по сборке аппарата

Стандартная схема инвертора по проекту Ю.Негуляева

Возьмите 6-миллиметровую плиту из дюралюминия. Присоедините к ней все отдающие тепло проводники и провода. Учтите, что здесь провод не нужно опоясывать термоизолирующим материалом. Используя старую схему (к примеру, компьютера), вам не придется отдельно искать транзисторы и тиристоры.

Далее подготовьте специальный высокомощный вентилятор (вы можете воспользоваться даже автомобильным радиатором). Он будет обдувать все, включая резонансный дроссель. Не забудьте прижать последний к вашей основе с помощью прокладочного уплотнителя.

Для изготовления самого дроссельного прибора возьмите шесть медных сердечников. Их можно найти на рынке или сделать самому из деталей ненужного старого телевизора. Прижмите диоды к основанию схемы, а потом присоедините к ним стабилизаторы напряжения и изоляционные уплотнители.

Ставя трансформатор, заизолируйте проводниковые пучки с помощью изоленты или фторопластовой полосы. Разведите проводники в разные стороны, чтобы они не контачили и не вызывали сбоев в работе. На полевом транзисторе понадобится провести монтаж силового поля, чтобы продлить работоспособность вашего инвертора. Для этого возьмите медный провод 2-миллиметрового сечения. Залужив его, обмотайте в несколько слоев обычной ниткой. Так вы защитите ваш проводник от разных повреждений и при пайке, и при сварке. Чтобы закрепить монтаж, используйте изолирующие пяточки. Так вы еще и перенесете на них нагрузку с транзисторов.

Сделать инвертор самостоятельно реально, даже при отсутствии глубоких познаний в области электротехники, электроники. Для этого всего лишь нужно разобрать принцип работы подобного устройства, четко придерживаться готовой схемы. Если заняться изготовлением самодельного сварочного аппарата, который практически не будет уступать по техническим характеристикам заводскому аналогу, можно очень хорошо сэкономить.

Не стоит сомневаться, что сварочный агрегат, изготовленный самостоятельно, будет эффективно работать. Устройство, собранное по самой простой схеме, будет позволять варить электродами 3,0-5,0 мм, с длиной дуги – 1 см.

  1. Ненужный компьютерный блок может быть корпусом установки.
  2. Комплектация сварочного инвертора своими руками неоригинальна, напоминает большинство прочих самодельных конструкций. Многие элементы можно заменить аналогами. При наличии основных деталей конструкции можно рассчитать оптимальные параметры корпуса и начать его изготовление.
  3. Подойдут готовые радиаторы от старых приборов, например, блоков питания ПК. Но их можно изготовить и самостоятельно, если есть под рукой шина из алюминия, толщина которой составляет от 2 до 4 мм, а ширина больше 3 см. Можно задействовать вентилятор от какого-либо старого прибора.
  4. Все детали больших размеров рекомендуется первоначально разложить на плоскости, чтобы можно было наглядно определить возможности соединения согласно схеме.
  5. Далее нужно определиться с местом под вентилятор. Он не должен гнать горячий поток воздуха от одних элементов устройства к иным. Если в данной ситуации присутствуют сложности, тогда можно воспользоваться несколькими вентиляторами одновременно, которые будут работать на вытяжку. Цена кулеров, их масса незначительны, но зато надежность агрегата в целом существенно увеличится.
  6. https://youtu.be/mwk1co6delA

  7. Основные элементы конструкции самодельного сварочного полуавтомата, отличающиеся большими размерами и массой – это дроссель и трансформатор. Рекомендуется их размещать по краям (симметрично друг другу) или по центру. То есть их масса не должна перетягивать аппарат в одну из сторон. К примеру, работать с установкой, подвешенной на ремне через плечо сварщика достаточно неудобно, когда она постоянно будет сползать в одном направлении.
  8. После того как все детали из сварочного инвертора расставлены по своим местам, необходимо определиться с параметрами днища для агрегата, вырезать из подручного материала, который обязательно должен быть неэлектропроводящий. Чаще всего для этих целей применяется стеклотекстолит, гетинакс. Если же данного материала нет, тогда подойдет обычная древесина, предварительно обработанная влагостойкими, противопожарными растворами. Крайний вариант даже отличается некоторыми достоинствами.
  9. Компонентами крепежа обычно являются шурупы, что упрощает, удешевляет сборку изделия.

Самодельная сварка: материалы для изготовления, основные характеристики

После сборки полуавтоматического сварочного инвертора по стандартной несложной электрической схеме, вы станете обладателем эффективной установки со следующими эксплуатационными характеристиками:

  • напряжение – 220В;
  • ток на входе – 32А, на выходе – 250А.


В схему сварочного оборудования с подобными техническими показателями входят следующие детали:

  • блок питания;
  • блок силовой;
  • драйверы силовых ключей.

Перед тем как собирать самодельный сварочный аппарат, рекомендуется подготовить все компоненты по схеме, инструмент для выполнения сборки. Для такой самоделки понадобятся:

  • комплект отверток;
  • ножовка по металлу;
  • проволока, полосы из меди;
  • паяльник для соединения деталей электронных схем;
  • металлический лист малой толщины:
  • резьбовые компоненты крепежа;
  • компоненты для формирования электронных схем;
  • текстолит;
  • термобумага;
  • слюда;
  • стеклоткань.

Для применения в домашних условиях изготавливают чаще инверторы, которые функционируют от стандартной электросети (220В). Если существует потребность, то можно также собрать аппарат, который будет функционировать от трехфазной электросети (380В). Инверторы подобного типа отличаются собственными преимуществами, одним из которых можно обозначить довольно высокий КПД в отличие от однофазных изделий.

Намотка трансформатора

Чтобы произвести намотку трансформатора понадобиться полоска из меди: толщина – 0,3 мм, ширина – 40 мм. Проволока из меди подходит для высокого нагрева. Термопрослойку можно выполнить из бумаги, используемой для кассовых аппаратов, или ксероксной. Но второй вариант хуже, бумага не достаточно прочная, может порваться.

Лакоткань – оптимальный доступный изоляционный материал, желательно использовать минимум слой. Для электрической безопасности устройства можно поместить в обмотки пластины из текстолита. Напряжение зависимо от качества выполненной изоляции между обмотками. Длины полос из бумаги должно хватать для полного перекрытия периметра обмотки и еще должен быть запас – минимум 2 см.

Запрещено использовать толстую проволоку, так как работа инверторного сварочного аппарата основана на высокочастотных токах. Если взять такой провод, то его сердцевина при работе задействоваться не будет. В результате может произойти перегрев трансформатора.

Для того чтобы не допустить подобного эффекта, рекомендуется брать проводник минимальной толщины, большей площади. Поверхность подобного типа не перегреется, является эффективным проводником.

При выполнении вторичной обмотки рекомендовано использовать 3 полоски из меди, отделяемые между собой фторопластовой пластинкой. И снова выполняется термическая прослойка из бумажной кассовой ленты. Недостаток этой бумаги – темнеет после нагревания, но остается прочной на разрыв.

Вместо полоски из меди можно также использовать проволоку ПЭВ – диаметр не более 0,7 мм. Такой провод имеет большое количество жил – это его основное достоинство. Но подобный вариант обмотки намного хуже, чем медный, провода подобного типа обладают значительными воздушными просеками, из-за чего плохо стыкуются.

При использовании ПЭВ конструкция полуавтомата из инвертора имеет четыре обмотки (используется ПЭВ диаметром – 0,3 мм):

  • первичная обмотка – 100 витков;
  • 1-я вторичная обмотка – 15 витков;
  • 2-я вторичная обмотка – 15 витков;
  • 3-я вторичная обмотка – 20 витков.

Обязательно необходим вентилятор охлаждения трансформатора и всей конструкции. Для этих целей прекрасно подойдет кулер системного блока (220В, 0,15А).

Охлаждение

Силовые компоненты схемы самодельного сварочного инвертора, изготовленного самостоятельно, значительно нагреваются. Это может способствовать быстрой поломке. Чтобы не допустить их перегревания, кроме радиаторов охлаждения для блоков, нужно дополнительно устанавливать вентиляторы.

При наличии вентилятора большой мощности, можно обойтись только им. При этом поток холодного воздуха необходимо направлять на силовой трансформатор. При использовании вентиляторов небольшой мощности, к примеру, от старых ПК, их нужно около шести, три из которых будут охлаждать трансформатор.


Также, чтобы не допускать перегревания сварочного аппарата своими руками, рекомендуется устанавливать на наиболее нагревающийся радиатор температурный датчик, который при достижении максимально допустимой температуры подаст сигнал на автоматическое отключение.

Для эффективной работы вентиляционной системы в корпусе сварочного агрегата необходимо правильно установить воздухозаборники, решетки которых не должны быть перекрыты.

Настройка

Самодельный сварочный инвертор собрать несложно, и для этого не требуются значительные капиталовложения. Но выполнить его настройку без привлечения специалиста проблематично. Как сделать и настроить самодельный инвертор самостоятельно?

Инструкция

  1. Необходимо предварительно на плату сварочного агрегата подать напряжение. Блок станет издавать характерный писк. Сетевое напряжение также нужно подать на вентилятор охлаждения, который не допустит перегрева деталей, и агрегат будет стабильней работать.
  2. Когда силовые конденсаторы получили достаточную зарядку, необходимо замкнуть токоограничивающий резистор (проверяется работа реле, на резисторе должно быть нулевое напряжение).

Важно – если сварку подключить без токоограничивающего резистора, возможен взрыв!

  1. Использование подобного типа резистора существенно снижает скачки тока в момент подключения сварки к сети 220В.
  2. Наш инструмент вырабатывает ток более 100А. Данный параметр зависит от конкретно применяемой схемы, а вычислить его можно с помощью осциллографа.
  3. Проверка режима сварки на блоке управления самодельного плазмореза. Для этого нужно подсоединить к выходу усилителя оптрона вольтметр. Для устройств незначительной мощности среднее амплитудное напряжение должно быть порядка 15В.
  4. Далее нужно проверить выходной мост на правильность его сборки. Для этого подается от подходящего блока питания напряжение 16В на вход агрегата. Блок на холостом ходу потребляет ток порядка 100 мА, что стоит учесть при выполнении контрольных замеров.
  5. Работу своего самодельного инвертора можно сравнить с работой промышленного. На обеих обмотках осциллографом измеряется соответствие друг другу импульсов.
  6. Далее нужно проконтролировать работу . Необходимо поменять напряжение с 16В на 220В, подсоединяя инвертор напрямую к электросети. С помощью осциллографа, подсоединенного к выходным транзисторам, наблюдаем за формой сигнала, ее соответствие испытаниям на минимальном напряжении.


Инвертор для сварки является достаточно востребованным агрегатом в любой сфере деятельности: на производстве, в домашних условиях. А благодаря использованию встроенного регулятора, выпрямителя тока сварочный агрегат инверторного типа позволит добиться наиболее эффективных результатов сварки, если их сравнивать с результатами аналогичных работ с использованием стандартных сварочных агрегатов, на которых установлены трансформаторы из стали электротехнической.

Вывод

Сборка самодельного не представляет особой сложности. Если для этого нет достаточного опыта, то можно всегда обратиться к специалистам за дополнительной консультацией. Но в результате можно собрать агрегат с дополнительными функциями, которых лишены заводские аналоги, и существенно сэкономить денежные средства.

1. Немного теории и основные требования к сварочному аппарату.

В связи с тем, что данное пособие не является технологической картой, то я не привожу ни разводку печатных плат, ни конструкцию радиаторов, ни порядок размещения деталей в корпусе, ни конструкцию самого корпуса! Всё это не имеет значения и никак не влияет на работу аппарата! Важно только, что на транзисторах (на всех вместе, а не на одном) моста выделяется около 50 ватт, и на силовых диодах тоже около 100 ватт, итого около 150 ватт! Как Вы распорядитесь этим теплом меня мало волнует, хоть в стакан с дистилированной водой их опустите (шутка:-))), главное не разогревайте их выше 120 градусов С. Ну вот с конструкцией разобрались, теперь немного теории и можно приступать к настройке.
Что такое сварочный аппарат - это мощный блок питания способный работать в режиме образования и продолжительного горения дугового разряда на выходе! Это достаточно тяжёлый режим и не всякий блок питания может в нём работать! При касании концом электрода свариваемого металла происходит короткое замыкание сварочной цепи, это самый критический режим работы блока питания (БП), так как для разогрева, расплавления и испарения холодного электрода требуется энергии гораздо больше, чем для простого горения дуги, т.е. БП, должен иметь запас по мощности достаточный для стабильного поджига дуги, при использовании электрода максимально допустимого для данного аппарата диаметра! В нашем случае это 4мм. Электрод типа АНО-21 диаметром 3мм стабильно горит при токах 110-130 ампер, но если для БП это максимальный ток, то дугу зажечь будет весьма проблематично! Для стабильного и легкого зажигания дуги необходимо ещё 50-60 ампер, это в нашем случае 180-190 ампер! И хотя режим поджига кратковременный, его должен выдерживать БП. Идём дальше, дуга загорелась, но по законам физики вольт-амперная характеристика (ВАХ) электрической дуги в воздухе, при атмосферном давлении, при сварке покрытым электродом имеет падающий вид, т.е. Чем больше ток в дуге, тем меньше на ней напряжение, и только при токах больше 80А напряжение дуги стабилизируется, и остается постоянным при увеличении тока! Исходя из этого можно сообразить, что для лёгкого поджига и устойчивого горения дуги ВАХ БП должна дважды пересекаться с ВАХ дуги! В противном случае дуга будет не устойчивой со всеми вытекающими последствиями, как то непровар, пористый шёв, прожёги! Теперь можно кратко сформулировать требования к БП;
а) учитывая КПД (около 80-85%) мощность БП должна быть не менее 5 кВт;
б) должен иметь плавную регулировку выходного тока;
в) на малых токах легко зажигать дугу, иметь систему горячего поджига;
г) иметь защиту от перегрузки при залипании электрода;
д) выходное напряжение на хх не ниже 45В;
е) полная гальваническая развязка от сети 220В;
ж) падающая вольт-амперная характеристика.
Вот собственно и всё! Всем этим требованиям отвечает разработанный мной аппарат, технические характеристики и электрическая схема которого приведены ниже.

2. Технические характеристики самодельного сварочного аппарата

Напряжение питающей сети 220 + 5% В
Сварочный ток 30 - 160 А
Номинальная мощность в дуге 3,5 кВА
Напряжение холостого хода при 15 витках в первичной обмотке 62 В
ПВ (5 мин.),% При мах токе 30 %
ПВ при токе 100А 100 % (приведенный ПВ относится только к моему аппарату, и полностью зависит от охлаждения, чем мощнее будет вентилятор, тем больше ПВ) Максимальный потребляемый
ток от сети (измерен по постоянке) 18 А
КПД 90%
Вес вместе с кабелями 5 кг
Диаметр электрода 0,8 - 4 мм

Сварочный аппарат предназначен для ручной дуговой сварки и сварки в защитном газе на постоянном токе. Высокое качество выполнения сварных швов обеспечивается дополнительными функциями, выполняемыми в автоматическом режиме: при РДС
- Горячий старт: с момента зажигания дуги в течение 0,3 секунд сварочный ток максимальный
- Стабилизация горения дуги: в момент отрыва капли от электрода сварочный ток автоматически увеличивается;
- При коротком замыкании и залипании электрода автоматически включается защита от перегрузки, после отрыва электрода все параметры востанавливаются через 1с.
- При перегреве инвертора сварочный ток плавно уменьшается до 30А, и остаётся таким до полного охлаждения, затем автоматически возвращается на установленное значение.
Полная гальваническая развязка обеспечивает 100% защиту сварщика от поражения электрическим током.

3. Принципиальная схема резонансного сварочного инвертора

Силовой блок, блок раскачки, блок защиты.
Др.1 - резонансный дроссель, 12 витков на 2хШ16х20, провод ПЭТВ-2, диаметр 2,24, зазор 0,6мм, L=88mkH Др.2 - выходной дроссель, 6,5 витков на 2хШ16х20, провод ПЭВ2, 4x2,24, зазор Змм, L=10mkH Тр. 1 - силовой трансформатор, первичная обмотка 14-15 витков ПЭТВ-2, диаметром 2,24, вторичная 4х(3+3) тем же проводом, 2хШ20Х28, 2000НМ, L=3,5mH Тр.2 - токовый трансформатор, 40 витков на феритовом колечке К20х12х6,2000НМ, провод МГТФ - 0,3. Тр.З - задающий трансформатор, 6x35 витков на феритовом колечке К28х16х9,2000НМ, провод МГТФ - 0,3. Тр.4 - понижающий трансформатор 220-15-1 . T1-T4 на радиаторе, силовые диоды на радиаторе, входной мост на 35А, на радиаторе. * Все времязадающие конденсаторы плёночные с минимальным TKE! 0,25хЗ,2кВ набираются из Юштук 0,1x1,6кВ типа К73-16В последовательно-параллельно. При подключении Тр.З обратить внимание на фазы, транзисторы T1-T4 работают по диагонали! Выходные диоды 150EBU04 , RC- цепочки параллельно диодам обязательны! При таких моточных данных диоды работают с перегрузкой, лучше их ставить по два параллельно, центральный один марки 70CRU04.

4. Выбор силовых транзисторов

Силовые транзисторы - это сердце любого сварочного аппарата! От правильного выбора силовых транзисторов зависит надёжность работы всего аппарата. Техни -ческий прогресс не стоит на месте, на рынке появляется множество новых полупроводниковых приборов, и разобраться в этом разнообразии довольно сложно. Поэтому в этой главе я постараюсь кратко изложить основные принципы выбора силовых ключей, при построении мощного резонансного инвертора. Первое, с чего нужно начинать, это приблизительное определение мощности буду -щего преобразователя. Я не буду давать отвлечённых расчётов, и сразу перейду к нашему сварочному инвертору. Если мы хотим получить в дуге 160 ампер при напряжении 24 вольта, то перемножив эти величины мы получим полезную мощность которую наш инвертор обязан отдать и при этом не сгореть. 24 вольта это среднее напряжение горения электрической дуги длинной 6 - 7 мм, в действи -тельности длинна дуги всё время меняется, и соответственно меняется напряже -ние на ней, меняется также и ток. Но для нашего расчёта это не очень важно! Так вот перемножив эти величины получаем 3840 Вт, ориентировочно прикинув КПД преобразователя 85%, можно получить мощность которую должны перекачивать через себя транзисторы, это примерно 4517 Вт. Зная общую мощность можно подсчитать ток, который должны будут коммутировать эти транзисторы. Если мы делаем аппарат для работы от сети 220 вольт, то просто разделив общую мощность на напряжение сети, можно получить ток, который аппарат будет потреблять от сети. Это приблизительно 20 ампер! Мне присылают много писем с вопросами, можно ли сделать сварочный аппарат, чтобы он мог работать от 12 вольтового автомобильного аккумулятора? Я думаю эти простые расчёты помогут всем любителям их задавать. Я предвижу вопрос, почему я разделил общую мощность на 220 вольт, а не на 310, которые получаются после выпрямления и фильтрации сетевого напряжения, всё очень просто, для того, чтобы при токе величиной 20 ампер поддерживать 310 вольт, нам понадобится ёмкость фильтра величиной 20000 микрофарад! А мы ставим не более 1000 мкФ. С величиной тока вроде разобрались, но это не должен быть максимальный ток выбранных нами транзисторов! Сейчас в справочных данных многих фирм приво -дится два параметра максимального тока, первый при 20 градусах Цельсия, а второй при 100! Так вот при больших токах протекающих через транзистор, на нём выделяется тепло, но скорость его отвода радиатором не достаточно высока и кристалл может нагреться до критической температуры, а чем сильнее он будет нагреваться, тем меньше будет его максимально допустимый ток, и в конечном итоге это может привести к разрушению силового ключа. Обычно такое разрушение выглядит как маленький взрыв, в отличии от пробоя по напряже -нию, когда транзистор просто тихо сгорает. Отсюда делаем вывод, для рабочего тока величиной 20 ампер необходимо выбирать такие транзисторы у которых рабочий ток будет не ниже 20 ампер при 100 градусах Цельсия! Это сразу сужает район наших поисков до нескольких десятков силовых транзисторов.
Естественно определившись с током нельзя забывать и о рабочем напряжении, в мостовой схеме на транзисторах напряжение не превышает напряжение питания, или проще говоря не может быть больше 310 вольт, при питании от сети 220 вольт. Исходя из этого выбираем транзисторы с допустимым напряжением не ниже 400 вольт. Многие могут сказать, что мы поставим сразу на 1200, это мол будет надёжнее, но это не совсем так, транзисторы одного вида, но на разные напряжения могут очень сильно отличаться! Приведу пример: IGBT транзисторы фирмы IR типа IRG4PC50UD - 600В - 55А, а такие же транзисторы на 1200 вольт IRG4PH50UD - 1200В - 45А, и это ещё не все отличия, при равных токах на этих транзисторах различное падение напряжения, на первом 1,65В, а на втором 2,75В! А при токах в 20 ампер это лишние ватты потерь, мало того, это мощность которая выделяется в виде тепла, её необходимо отвести, значит нужно увеличивать радиатор почти в два раза! А это дополнительный не только вес, но и объём! И всё это необходимо помнить при выборе силовых транзисторов, но и это ещё только первый прикид! Следующий этап, это подбор транзисторов по рабочей частоте, в нашем случае параметры транзисторов должны сохраняться как минимум до частоты 100 кГц! Есть один маленький секрет, не все фирмы дают параметры граничной частоты для работы в резонансном режиме, обычно только для силового переключения, а это частоты, как минимум в 4 - 5 раз ниже, чем граничная частота при использовании этого же самого транзистора в резонансном режиме. Это немного расширяет район наших поисков, но и с такими параметрами имеется несколько десятков транзисторов разных фирм. Самые доступные из них, и по цене и по наличию в продаже это транзисторы фирмы IR. В основном это IGBT но есть и хорошие полевые транзисторы с допустимым напряжением 500 вольт, они хорошо работают в подобных схемах, но не очень удобны в крепеже, нет отверстия в корпусе. Я не буду рассматривать параметры включения и выключе -ния этих транзисторов, хотя это тоже очень важные параметры, коротко скажу, что для нормальной работы IGBT транзисторов необходима пауза между закрытием и открытием, чтобы завершились все процессы внутри транзистора, не менее 1,2 микросекунды! Для MOSFET транзисторов, это время не может быть менее 0,5 микросекунды! Вот собственно все требования к транзисторам, и если все они будут выполнены, то Вы получите надёжный сварочный аппарат! Исходя из всего выше изложенного - лучший выбор это транзисторы фирмы IR типа IRG4PC50UD, IRG4PH50UD , полевые транзисторы IRFPS37N50A, IRFPS40N50, IRFPS43N50K . Эти транзисторы были опробованы и показали свою надёжность и долговечность при работе в резонансном сварочном инверторе. Для маломощных преобразователей, мощность которых не превышает 2,5 кВт можно смело использовать IRFP460 .

ПОПУЛЯРНЫЕ ТРАНЗИСТОРЫ ДЛЯ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ

НАИМЕН-НИЕ

НАПРЯЖЕНИЕ

СОПРОТ-НИЕ

МОЩНОСТЬ

ЕМКОСТЬ
ЗАТВОРА

Qg
(ПРОИЗВОДИТЕЛЬ)

СЕТЕВЫЕ (220 V)

17...23nC (ST )

38...50nC (ST )

35...40nC (ST )

39...50nC (ST )

46nC (ST )

50...70nC (ST )

75nC (ST )

84nC (ST )

65nC (ST )

46nC (ST )

50...70nC (ST )

75nC (ST )

65nC (ST )

STP20NM60FP

54nC (ST )

150nC (IR)
75nC (ST )

150...200nC (IN)

252...320nC (IN)

87...117nC (ST )

5. Описание работы и методика настройки узлов сварочного аппарата.

Переходим к электрической схеме. Задающий генератор собран на микросхеме UC3825, это один из лучших двухтактных драйверов, в нём есть всё, защита по току, по напряжению, по входу, по выходу. При нормальной работе его практически нельзя сжечь! Как видно из схемы ЗГ это классический двухтактный преобразователь, трансформатор которого управляет выходным каскадом.

Настраивается задающий генератор сварочного аппарата так: подаём питание и частотозадающим резистором вгоняем в диапазон 20-85кГц, нагружаем выходную обмотку трансформатора Тр3 резистором 56 Ом и смотрим форму сигнала, она должна быть такой как на рис.1


Рис.1

Мёртвое время или ступенька для IGBT транзисторов должно быть не менее 1,2мкс, если применяются MOSFET транзисторы, то ступенька может быть меньше, примерно 0,5мкс. Собственно ступеньку формирует частотозадающая емкость драйвера, и при деталях указанных на схеме, это около 2мкс. На этом пока настройку ЗГ завершаем
Выходной каскад БП - полный резонансный мост, собранный на IGBT транзисторах типа IRG4PC50UD, эти транзисторы в резонансном режиме могут работать до 200кГц. В нашем случае, управление выходным током осуществляется изменением частоты ЗГ от 35кГц (максимальный ток) до 60кГц (минимальный ток), и хотя резонансный мост сложнее в изготовлении, и требует более тщательной настройки, все эти трудности с лихвой окупаются надёжной работой, высоким КПД , отсутствием динамических потерь на транзисторах, транзисторы переключаются в нуле тока, что позволяет применять минимальные радиаторы для охлаждения, ещё одно замечательное свойство резонансной схемы - это самоограничение мощности. Объясняется этот эффект просто, чем больше мы нагружаем выходной трансформатор, а он является активным элементом резонансной цепочки, тем сильнее меняется частота резонанса этой цепочки, и если процесс увеличения нагрузки происходит при постоянной частоте, возникает эффект автоматического ограничения тока протекающего через нагрузку и естественно через весь мост!
Именно поэтому так важно настраивать аппарат под нагрузкой, то есть чтобы получить максимальную мощность в дуге с параметрами 150А и 22-24В, необходимо подключить к выходу аппарата эквивалентную нагрузку, это 0,14 - 0,16 Ом, и подбирая частоту настроить резонанс, именно на этой нагрузке аппарат будет иметь максимальную мощность и максимальный КПД, и тогда даже при режиме короткого замыкания (КЗ), несмотря на то, что во внешней цепи будет протекать ток превышающий резонансный, напряжение упадёт практически до нуля, сответственно и мощность уменьшится, и транзисторы не войдут в режим перегрузки! И ещё, резонансная схема работает в синусоиде и наростание тока происходит тоже по синусоидальному закону, тоесть dl/dt не превышает допустимых режимов для транзисторов, и не требуются снабберы (RC цепочки) для защиты транзисторов от динамических перегрузок, или что более понятно от слишком крутых фронтов, их просто не будет вообще! Как видим вроде всё красиво и кажется, что схема защиты от перегрузки по току не нужна вообще, или нужна только в процессе настройки, не обольщайтесь, ведь регулировка тока осуществляется изменением частоты, и есть маленький участок на АЧХ, когда при КЗ возникает резонанс, в этом месте ток через транзисторы может превысить допустимый ток для них, и транзисторы естественно сгорят. И хотя специально попасть именно в этот режим достаточно сложно, но по закону подлости вполне возможно! Вот в этот момент и понадобится защита по току!
Вольт - амперная характеристика резонансного моста сразу имеет падающий вид, и естественно нет необходимости искуственно её формировать! Хотя при необходи -мости угол наклона ВАХ легко регулируется резонансным дросселем. И ещё одно свойство, не рассказать о котором я не могу, и узнав о нем Вы навсегда забудете схемы с силовым переключением, которые в изобилии имеются в интернете, это чудесное свойство - возможность работы нескольких резонансных схем на одну нагрузку с максимальным КПД! Практически это дает возможность создавать сварочные (или любые другие) инверторы неограниченной мощности! Можно создавать блочные конструкции, где каждый блок будет иметь возможность самостоятельной работы, это повысит надежность всей конструкции и даст возможность легко заменять блоки при выходе их из строя, а можно одним драйвером запустить несколько силовых блоков и они все будут работать синфазно. Так сварочный аппарат, построенный мной по такому принципу, легко отдаёт в дугу 300 ампер, при весе без корпуса 5 кГ! И это только двойной набор, наращивать же мощность можно безгранично!
Это было легкое отклонение от основной темы, но я надеюсь оно дало возможность понять и оценить все прелести схемы полного резонансного моста. Теперь вернёмся к настройке!
Настраивается так: подключаем ЗГ к мосту, учитывая фазы (транзисторы работают по диагонали), подаём питание 12-25В, во вторичную обмотку силового трансформатора Тр1 включаем лампочку на100Вт 12-24В, изменяя частоту ЗГ добиваемся наиболее яркого свечения лампочки, в нашем случае это 30-35кГц, это частота резонанса, далее я попы -таюсь подробно рассказать о том, как работает полный резонансный мост.
Транзисторы в резонансном мосте (как и в линейном) работают по диагонали, это выглядит так, одновременно открыты левый верхний Т4 и правый нижний Т2, в это время правый верхний Т3 и левый ниж -ний Т1 закрыты. Или наоборот! В работе резонансного моста можно выделить четыре фазы. Рассмотрим, что и как происходит если частота переключения транзисторов совпадает с резонансной часто -той цепочки Др.1- Срез.- Тр.1. Допустим в первой фазе открываются транзисторы Т3, Т1, время нахождения их в открытом состоянии задаётся драйвером ЗГ, и при резонансной частоте 33кГц, составляет 14 мкс. В это время ток протекает через Срез. - Др.1 - Тр.1. Ток в этой цепи сначала возрастает от нуля до масимального значения, а затем, по мере зарядки конденсатора Срез. , уменьшается до нуля. Включенный последовательно с конденсатором резонансный дроссель Др.1 формирует синусоидальные фронты. Если последовательно с резо -нансной цепочкой включить резистор, и к нему подключить осцилло -граф можно увидеть форму тока, напоминающую полупериод синусо -иды. Во второй фазе, длящейся 2 мкс, затворы транзисторов Т1, Т3 соеденены с землёй, через резистор 56 Ом и обмотку импульсного трансформатора Тр.3, это так называемое "мёртвое время". За это время емкости затворов транзисторов Т1, Т3 полностью разряжают -ся, и транзисторы закрываются. Как видно из выше сказанного, мо -мент перехода из открытого состояния в закрытое, у тразисторов совпадает с нулём тока, ведь конденсатор Срез. уже зарядился и ток через него уже не течёт. Наступает третья фаза - открываются транзис -торы Т2,Т4. Время нахождения их в открытом состоянии 14 мкс, за это время конденсатор Срез., полностью перезаряжается, образуя второй полуперид синусоиды. Напряжение до которого перезаряжается Срез., зависит от сопротивления нагрузки во вторичной обмотке Тр.1, и чем сопротивление нагрузки меньше, тем больше напряжение на Срез. При нагрузке 0,15 Ом, напряжение на резонансном конденсаторе может достигать значения 3кВ. Четвёртая фаза начинается, как и вторая, в тот момент, когда коллекторный ток транзисторов Т2,Т4 уменьшается до нуля. Эта фаза также длится 2 мкс. Транзисторы закрываются. Далее всё повторяется. Вторая и четвёртая фазы работы, необходимы для того, чтобы транзисторы в плечах моста успели закрыться до того, как откроется следующая пара, если время второй и четвертой фаз, будет меньше времени необходимого для полного закрытия выбранных тран -зисторов, возникнет импульс сквозного тока, практически КЗ по высоко -му напряжению, при этом последствия легко предсказуемы, обычно выгорает полностью плечо (верхний и нижний транзисторы), плюс сило -вой мостик, плюс пробки у соседа! :-))). Для транзисторов, применённых в моей схеме, "мертвое время" должно быть не менее 1,2 мкс, но учиты -вая разброс параметров, я сознательно увеличил его до 2 мкс.
Следует помнить ещё одну весьма важную вещь, все элементы резонансного моста оказывают влияние на частоту резонанса и при замене любого из них, будь то конденсатор, дроссель, трансформатор или транзисторы, для получения максимального КПД, необходимо заново настроить резонансную частоту! На схеме я привёл величины индуктивностей, но это не значит, что поставив дроссель или трасформатор другой конструкции, имеющий такую индуктивность, Вы полу -чите обещанные параметры. Лучше сделать, как я рекомендую. Будет дешевле!
Как работает резонансный мост, в общих чертах, вроде стало понятно, теперь разберемся какую, и достаточно важную функцию выполняет резонансный дрос -сель Др.1
Если при первой регулировке резонанс окажется намного ниже чем 30 кГц, не пугайтесь! Просто ферритовый сердечник Др1., немного другой, это легко корректируется увеличением немагнитного зазора, ниже подробно описан процесс настройки и нюансы конструкции резонансного дросселя Др.1.
Самым важным элементом резонансной схемы является резонансный дроссель Др.1, от качества его изготовления зависит мощность отдаваемая инвертором в нагрузку и частота резонанса всего преобразователя! В процес -се предварительной настройки закрепите дроссель так, чтобы его можно было снять и разобрать, для увеличения или уменьшения зазора. Всё дело в том, что ферритовые сердечники применённые мной всегда разные, и каждый раз приходится подстраивать дроссель изменением толщины немагнитного зазора! В моей практике, чтобы получить идентичные выходные параметры, приходилось менять зазоры от 0,2 до 0,8мм! Начинать лучше с 0,1мм, нахо -дить резорнанс и одновременно замерять выходную мощность, если резо -нансная частота ниже 20кГц, и выходной ток при этом не превышает 50-70А, то можно смело увеличивать зазор в 2- 2,5 раза! Все регулировки в дросселе производить только изменением толщины немагнитного зазора! Число витков не менять! В качестве прокладок применять только бумагу или картон, никогда не применять синтетические плёнки, они ведут себя не предсказуемо, могут расплавиться или вообще сгореть! При параметрах указанных на схеме индуктивность дросселя должна быть примерно 88-90мкГ, это при зазоре 0,6 мм, 12 витках провода ПЭТВ2 диаметром 2,24мм. Ещё раз повторюсь, вгонять параметры можно только изменяя толщину зазора! Оптимальная частота резонанса для ферритов с проницаемостью 2000НМ лежит в диапазоне 30-35 кГц, но это не значит, что они не будут работать ниже или выше, просто потери будут немного другие. Сердечник дросселя нельзя стягивать металлической скобой, в районе зазора металл скобы будет сильно нагреваться!
Дальше - резонансный конденсатор, не менее важная деталь! В первых конструкциях я ставил К73 -16В, но их надо минимум 10 штук, и конструкция получается достаточно громоздкая, хотя довольно надёжная. Сейчас появились импортные конденсаторы фирмы WIMA MKP10, 0,22x1000V - это специальные конденсаторы для больших токов, работают очень надёжно, я их ставлю всего 4 штуки, места практически не занимают и не греются вообще! Можно применить конденсаторы типа К78-2 0,15х1000В, их понадобится 6 штук. Соединяются в два блока по три параллельно, получается 0,225х2000В. Работают нормально, почти не греются. Либо использовать конденсаторы, предназначенные для работы в индукционных плитах, типа MKP из Китая .
Ну вот вроде разобрались, можно переходить к дальнейшей настройке.
Меняем лампу на более мощную и на напряжение 110В, и всё повторяем сначала, постепенно поднимая напряжение до 220 вольт. Если всё работает, отключаем лампу, подключаем силовые диоды и дроссель Др.2. К выходу аппарата подключаем реостат сопротивлением 1Ом х 1кВт и всё повторяем сначала измеряя напряжение на нагрузке подгоняем частоту к резонансу, в этот момент на реостате будет максимальное напряжение, при изменение частоты в любую сторону, напряжение уменьшается! Если всё правильно собрано то максимальное напряжение на нагрузке будет около 40В. Сответственно ток в нагрузке около 40А. Не трудно посчитать мощность 40х40, получаем 1600Вт, далее уменьшая сопротивление нагрузки, частотозадающим резистором подстраиваем резонанс, мах ток можно получить только на резонансной частоте, для этого подключаем вольтметр параллельно нагрузке и изменяя частоту ЗГ находим мах напряжения. Расчёт резонансных цепей подробно описан в (6). В этот момент можно посмотреть форму напряжения на резонансном конденсаторе, должна быть правильная синусоида амплитудой до 1000 вольт. При уменьшении сопротивления нагрузки (увеличении мощности), амплитуда увеличивается до 3кВ, но форма напряжения должна оставаться синусоидальной! Это важно, если возникает треугольник, это значит, что пробита ёмкость или замкнула обмотка резонансного дросселя, и то и другое не желательно! При номиналах указанных на схеме резонанс будет около 30-35кгц (сильно зависит от проницаемости феррита).
Ещё одна важная деталь, для получения максимального тока в дуге, нужно настраивать резонанс при максимальной нагрузке, в нашем случае, для получения тока в дуге 150А, нагрузка при настройке должна быть 0,14ом! (Это важно!). Напряжение на нагрузке, при настройке мах тока должно быть 22 -24В, это нормальное напряжение горения дуги! Соответственно мощность в дуге будет 150х24=3600Вт, этого достаточно для нормольного горения электрода диаметром 3-3,6мм. Сварить можно практически любую железку, я сваривал рельсы!
Регулировка выходного тока осуществляется изменением частоты ЗГ.
При повышении частоты происходит следующее, во первых: изменяется отношение длительности импульса к паузе (ступеньке); во вторых: преобразователь выходит из резонанса; и дроссель из резонансного превращается в дроссель рассеяния, то есть его сопротивление напрямую становится зависимым от частоты, чем больше частота - тем больше индуктивное сопротивление дросселя. Естественно всё это приводит к уменьшению тока через выходной трансформатор, в нашем случае изменение частоты с 30кГц до 57 кГц, вызывает изменение тока в дуге от 160А до 25А,т.е. в 6 раз! Если частоту менять автоматически то можно управлять током дуги в процессе сварки, на этом принципе реализован режим "горячий старт", его суть в том, что при любых значениях сварочного тока, первые 0,3с ток будет максимальный! Это даёт возможность легко зажигать и поддерживать дугу на малых токах. Режим тепловой защиты также организован на автоматическом увеличении частоты при достижении критической температуры, что естественно вызывает плавное уменьшение сварочного тока до минимального значения без резкого выключения! Это важно, так как не образуется кратер, как от резкого прерывания дуги!
Но в общем то без этих примочек можно и обойтись, всё работает достаточно устойчиво, и если работать без фанатизма то аппарат не нагревается более 45 градусов С, и дуга при любых режимах зажигается легко.
Далее рассмотрим схему защиты от перегрузки по току, как было сказано выше она нужна только в момент настройки и в момент совпадения режима КЗ с резонансом, если в этом режиме залипнет электрод! Как видно она собрана на 561ЛА7, схема представляет собой своеобразную линию задержки, задержка на включение 4мкс, на выключение 20мс, задержка на включение необходима для зажигания дуги в любом режиме, даже когда режим КЗ совпадает с резонансом!
Схема защиты настроена на мах ток в первичной цепи, около 30А, во время настройки лучше уменьшить ток защиты до 10-15А, для этого в схеме защиты вместо резистора 6к поставить 15к. Если всё работает попытаться зажечь дугу на какой -нибудь скрепке.
Ниже я попытаюсь объяснить почему приведенная схема защиты не эффектив -на в момент штатной работы, дело в том, что максимальный ток протекающий в первичной обмотке силового трансформатора полностью зависит только от конструкции резонансного дросселя, точнее от зазора в магнитном сердечнике этого дросселя, и чтобы мы не делали во вторичной обмотке, ток в первичной не может превысить максимальный ток резонансной цепочки! Отсюда вывод -защита настроенная на максимальный ток в первичной обмотке силового тр-ра может сработать только в момент резонананса, но зачем она нам в этот момент нужна? Только чтобы не перегрузить транзисторы в момент, когда режим КЗ совпадает с резонансом, и естественно на тот случай, если допустить, что сгорит одновременно резононсная цепочка и силовой трансформатор, то конечно такая защита необходима, собственно для этого я её и включил в схему с самого начала, когда проводил эксперименты с разными транзисторами и различными конструкциями дросселей, трансформаторов, конденсаторов. И зная пытливый ум наших людей, которые не поверят тому, что написано, и будут мотать свои тр - ры, дроссели, ставить все подряд конденсаторы, я её оставил, думаю не напрасно! :-))) Есть ещё один важный нюанс, как бы Вы не настраивали защиту, условие одно, на 9 ножку микросхемы Uc3825, не должно приходить плавно возрастающее напряжение, только быстрый фронт от 0,до +3(5)В, понимание этого, мне стоило нескольких силовых транзисторов! И ещё один совет:
- начинать настройку лучше, если в резонансном дросселе не будет зазора, это сразу ограничит ток КЗ в выходной обмотке на уровне 40 - 60А, а потом постепенно увеличивать зазор и соответственно выходной ток! Не забывая каждый раз подстраивать резонанс, с увеличением зазора он будет уходить в сторону увеличения частоты!
Ниже приведены схемы температурной защиты рис.2, горячего старта и стабилизатора горения дуги рис.3, хотя в последних разработках я их не ставлю и в качестве термозащиты приклеиваю на диоды и в обмотку силового трансформатора термовыключатели на 80°-100°С, соединяю их все последовательно, и выключаю дополнительным релле высокое напряжение, просто и надёжно! А дуга, при 62В на XX, зажигается достаточно легко и мягко, но включение схемы "горячего старта" позволяет избежать режима КЗ - резонанс! О нём говорилось выше.


Рис.2


Рис.3

Изменение наклона ВАХ от частоты, экспериментально полученные кривые при зазоре в резонансном дросселе 0,5 мм. При изменении зазора в ту или другую сторону, соответственно меняется крутизна всех кривых. При увеличении зазора ВАХ становятся более пологими, дуга более жесткой! Как видно из полученных графиков, увеличивая зазор, можно получить достаточно жёсткую ВАХ. И хотя начальный участок будет иметь вид крутопадающий, БП с такой ВАХ уже можно использовать с полуавтоматом С02, если уменьшить вторичную обмотку до 2+2 витков.

6. Новые разработки и описание их работы.

Здесь приведены схемы моих последних разработок и комментарии к ним.

На рис.5 приведенна схема сварочного инвертора с изменённой схемой блока защиты, в качестве датчика тока применён датчик Холла типа Ss495, этот датчик имеет линейную зависимость выходного напряжения от силы магнитного поля, и вставленный в распиленное кольцо из пермаллоя, позволяет измерять токи до 100 ампер. Через кольцо пропускается провод, цепь которого нуждается в защите, и при достижении предельно допустимого тока в этой цепи, схема даст команду на отключение. В моей схеме при достижении максимально допустимого тока, в защищаемой цепи, блокируется задающий генератор. Я пропускал через кольцо плюсовой провод высокого напряжения (+310В) тем самым ограничивая ток всего моста на уровне 20 - 25А. Для того, чтобы дуга зажигалась легко и схема защиты не давала ложных отключений, после датчика Холла введена RC цепочка, изменяя параметры которой можно установить задержку на выклю -чение силового блока. Вот собственно и все изменения, как видно силовую часть я практически не изменял, она оказалась весьма надёжной, уменьшил только входную ёмкость с 1000 до 470мкф, но это уже предел, меньше ставить не стоит. А без этой ёмкости вообще не рекомендую включать устройство, возникают высоковольтные выбросы и может выгореть входной мостик, со всеми вытека -ющими последствиями! Параллельно среднему диоду рекомендую поставить трансил 1,5КЕ250СА, в параллельных диодам RC цепочках, увеличить мощность резисторов до 5 Вт. Изменена система запуска, теперь она же является защитой от длительного режима КЗ, при залипании электрода, конденсатор включенный параллельно релле, задаёт задержку на отключение. Если на выходе стоит по одному силовому диоду 150EBU04 в плече, то я рекомендую не ставить больше 50mF, и хотя задержка будет всего несколько десятков милисекунд, этого вполне достаточно для поджига дуги и диоды не успевают сгореть! При включении двух диодов параллельно, можно увеличить емкость до 470mF, соответственно задержка увеличится до нескольких секунд! Работает система запуска так, при подключении к сети переменного тока, RC цепочка, состоящая из конденсатора ёмкостью 4mF и резистора сопротивлением 4-6 Ом, ограничивает входной ток на уровне 0,3А, основная ёмкость 470гг^х350у, медленно заряжается и естественно выходное напряжение повышается, как только на выходе напряжение достигает примерно 40В, срабатывает запускающее релле, замыкая своими контактами RC цепочку, после этого напряжение на выходе поднимается до 62В. Но любое релле обладает интересным свойством, срабатывает при одном токе, а отпускает якорь при другом токе. Обычно это соотношение 5/1, чтобы было понятней, если релле включилось при токе 5mA, то отключится при токе 1mA. Сопротивление включённое последовательно с релле, подобрано так, что включение происходит при 40В, а отключение при 10В. Так как цепочка релле - резистор, включена параллельно дуге, а как мы знаем дуга горит в диапазоне 18 - 28В, то и релле находится во включенном состоянии, если на выходе возникает КЗ (залипание электрода), то напряжение резко падает до 3-5В, учитывая падение на кабелях и электроде. При таком напряжении релле не может больше удерживаться во включенном состоянии и размыкает силовую цепь, включается RC - цепочка, но пока сохраняется режим КЗ в выходной цепи силовое релле будет разомкнуто. После устранения режима КЗ, напряжение на выходе начинает повышаться, срабатывает силовое релле и аппарат снова готов к работе, весь это процесс занимает 1-2 секунды, и практически не заметен, и оторвав электрод, можно сразу приступать к новым попыткам зажечь дугу. :-))) Обычно дуга плохо зажига -ется, если неправильно выбран ток, сырые или некачественные электроды, обсыпалась обмазка. И вообще следует помнить, что сварка на постоянном токе, если напряжение ХХ не превышает 65В требует идеально сухих электродов! Обычно на упаковке электродов пишут напряжение ХХ для сварки на постоянном токе при котором должен стабильно гореть электрод! Для АНО21 напряжение ХХ должно быть больше 50 Вольт! Но это для прокаленных электродов! А если они хранились годами в сыром подвале, то естественно гореть будут плохо, и лучше если напряжение ХХ будет выше. При 14 витках в первичной обмотке, напряжение ХХ около 66В. При таком напряжении большинство электродов горит нормально.
Ещё для уменьшения веса, вместо трансформатора на 15В, применён преобразователь на микросхеме IR53HD420, это очень надёжная микросхема, и на ней легко создать блок питания мощностью до 50Вт. Трансформатор в БП намотан в чашке Б22 - 2000НМ, первичная обмотка 60 витков, провод ПЭВ-2, диаметром 0,3мм, вторичная 7+7 витков, проводом диаметром 0,7мм. Частота преобразования 100 -120кГц, рекомендую ставить в качестве частотозадающего резистора подстроечник, чтобы в случае возникновения биений с силовым блоком иметь возможность изменить частоту! Возникновение биений - смерть аппарата!


Конструкция дросселя Др.1 и др.2

Прокладки из картона, 3 шт. Для Др.1 0,1 - 0,8 мм (подбирается при настройке) для Др.2 - 3 мм.
Сердечник 2хШ16х20 2000НМ
Каркас катушки склеивается из тонкого стеклотекстолита, одевается на деревянную оправку, и мотается необходимое количество витков. Др.1 - 12 витков, провод ПЭТВ-2, диаметр 2,24 мм, мотается с воздушным междувитковым зазором, толщина зазора 0,3 - 0,5 мм. Можно использовать толстую, хлопчатобумажную нитку, аккуратно укладывая её между витками провода, смотри рисунок. Др.2 - 6,5 витков мотается в четыре провода, марка ПЭТВ -2, диаметр 2,24 мм, общее сечение 16 кв. , мотается вплотную, в два слоя. Витки необходимо скрепить, можно эпоксидной смолой.


Рис.6 конструкция резонансного и выходного дросселя.




На Рис.7 показана конструкция силового блока, такой себе "слоёный пирог", это для ленивых:-)))


Рис.8


Рис.9


Рис.10


Рис.11

Рис.8 - 11 разводка блока управления, для тех кому вообще всё в лом:-))). Хотя разобраться, что и куда ведёт, необходимо!


Схема горячего старта


Рис.12 Схема мягкого поджига

Рис.12 система мягкого поджига, очень эффективна при работе на малых токах. Не зажечь дугу практически не возможно, просто ставишь электрод на металл, и постепенно начинаешь отводить, возникает малоамперная дуга, она не может приварить электрод, не хватает мощности, но горит и тянется отлично, зажигается как спичка, очень красиво! Ну а когда загорелась эта дуга, парал -лельно подключается силовая, если вдруг электрод залип, то мгновенно отключается силовой ток, остаётся только ток поджига. И пока не загорится дуга, силовой ток не включается! Советую поставить, дуга будет при любых условиях, силовой блок не перегружается и всегда работает в оптимальном режиме, токи КЗ практически исключаются!


Рис.13

Блок управления силовой дугой показан на Рис.13. Работает так - меряет напряжение на выходном резисторе системы поджига, и даёт сигнал на запуск силового блока только в диапазоне напряжений 55 - 25V, то есть только в тот момент когда горит дуга!

Контакты релле Р работают на замыкание, и включаются в разрыв высоковольтной цепи силового блока. Релле 12VDC, 300VDC x 30A.
Релле с такими параметрами найти довольно сложно, но можно пойти другим путём:-)) включить релле на размыкание, один контакт подключить к +12V, а второй через резистор сопротивлением 1кОм, подлключить к 9 ножке микросхемы Uc3825 в блоке ЗГ. Работает не хуже! Или применить схему приведенную ниже на Рис.15,

Схема абсолютно автономная, но при несложной доработке, её можно использовать одновременно как блок питания (12V) для схемы управления, мощность этого преобразователя не более 200Вт. На транзисторы и диоды необходимо поставить радиаторы. Выходные ёмкости и выходной дроссель в силовом блоке, при подключении "МП", вообще исключить. На Рис.14 показана полная схема сварочного инвертора с системой мягкого поджига.


точка подключения показана красным пунктиром на Рис.14


Рис.16. Рабочая схема одного из вариантов мягкого поджога

7. Заключение

В заключении хочу коротко отметить главные моменты о которых нужно помнить при конструировании мощного резонансного сварочного инвертора:
а) полностью исключить ШИМ, для этого необходимо стабилизированное напряжение питания задающего генератора, никаких изменяющихся напряжений на входы усилителя "ошибки"(1,3), минимальное время "плавного запуска" задаётся ёмкостью на (8), блокировку микросхемы (9) производить только резким перепадом напряжения, лучше всего логическим из 0 в +5В с крутым фронтом наростания, включение таким же логическим спадом от +5В в 0;
б) в затворах силовых транзисторов обязательно ставить двуханодные стабилитроны типа КС213;
в) управляющий трансформатор размещать в непосредственной близости от силовых транзисторов, провода идущие к затворам скручивать парами;
г) при разводке платы силового моста, помнить, что по дорожкам будут протекать значительные токи (до 25А), поэтому шину (-) и шину (+), а также шины подключения резонансной цепи, необходимо сделать как можно шире, а медь залудить;
д) все силовые цепи должны иметь надёжные соединения, лучше всего их пропаять, плохой контакт, при токах больше 100А, может привести к расплавлению и возгоранию внутренних частей аппарата;
е) провод подключения к сети должен иметь достаточное сечение 1,5 - 2,5 мм кв;
ж) на входе обязательно ставить предохранитель на 25А, можно поставить автомат;
з) все высоковольтные цепи должны быть надёжно изолированны от корпуса и выхода;
и) резонансный дроссель не стягивать металлической скобой, и не накрывать сплошным металлическим кожухом;
к) необходимо помнить, что на силовых элементах схемы выделяется значительное количество тепла, это необходимо учитывать при размеще -нии деталей в корпусе, необходимо предусмотреть систему вентиляции;
л) параллельно выходным силовым диодам обязательно ставить защитные RC - цепочки, они защищают выходные диоды от пробоя по напряжению;
м) никогда не ставить в качестве резонансного конденсатора всякий мусор, это может привести к весьма плачевным результатам, только те типы которые обозначены на схеме, это К73-16В (0,1х1600В) или WIMA MKP10 (0,22х1000В), К78-2 (0,15х1000В) включив их последовательно -параллельно.
Строгое соблюдение всех выше перечисленных пунктов обеспечит 100% успех и Вашу безопасность. Необходимо всегда помнить - силовая электроника не прощает ошибок!

8. Принципиальные схемы и описание работы, инвертора с дросселем рассеяния.

Один из способов создания падающей вольт - амперной характеристики у сварочного аппарата, это применение дросселя рассеяния. По такой схеме построен аппарат "Форсаж". Это, что то среднее между обыкновенным мостом, ток в котором управляется ШИМом, и резонансным, управляемым изменением частоты.

Я постараюсь осветить все плюсы и минусы такого построения сварочного инвер тора. Начнём с плюсов: а) регулировка тока - частотная, при повышении частоты ток уменьшается. Это даёт возможность регулировки тока в автоматическом режи -ме, легко строится система "горячего старта".
б) падающая ВАХ формируется дросселем рассеяния, такое построение более надёжное, чем параметрическая стабилизация при ШИМ, и более быстрая, нет задержки на включение активных элементов. Простота и надёжность! Пожалуй это все плюсы. :-(^^^Л
Теперь о минусах, их тоже не много:
а) транзисторы работают в линейном режиме переключения;
б) для защиты транзисторов требуются снабберы;
в) узкий диапазон регулировки тока;
г) низкие частоты преобразования, обусловлены параметрами силового переключения транзисторов;
но они довольно существенны, и требуют своих методов их компенсации. Разберём работу инвертора построенного по такому принципу см. Рис. 17 Как видим его схема практически не отличается от схемы резонансного инвертора, изменены только параметры LC цепочки в диагонали моста, введены снабберы для защиты транзисторов, уменьшены сопротивления резисторов включенных параллельно затворным обмоткам задающего трансформатора, увеличена мощность этого трансформатора.
Рассмотрим LC цепочку включенную последовательно с силовым трансформатором, емкость конденсатора С, увеличена до 22 мкР, сейчас он работает как симметрирую -щий конденсатор, не дающий намагнититься сердечнику. От параметров дросселя L полностью зависит ток КЗ преобразователя, диапазон регулировки мощности, часто -та преобразования инвертора. При частотах преобразования аппарата "Форсаж 125," а это 10 - 50 кГц, индуктивность дросселя составляет 70 мкГ, на частоте 10 кГц сопротивление такого дросселя 4,4 Ом, следовательно ток КЗ, через первичную цепь, будет 50 ампер! Но не более! :-) Для транзисторов это конечно многовато, поэтому в "Форсаже" применена двухступенчатая защита от перегрузки по току, ограничивающая ток КЗ на уровне 20-25 ампер. ВАХ такого преобразователя представляет собой круто падающую прямую, линейно зависящую от выходного тока.
При увеличении частоты, реактивное сопротивление дросселя возростает, следова -тельно происходит ограничение тока протекающего через первичную обмотку выходного трансформатора, выходной ток линейно уменьшается. Недостатком такой системы регулировки тока, является то, что форма тока с увеличением частоты становится похожа на треугольник, а это увеличивает динамические потери, и на транзисторах выделяется лишнее тепло, но учитывая то, что общая мощность понижается, и ток через транзисторы тоже понижается, этими величинами можно принебречь.
Практически, самым существенным недостатком, схемы инвертора с дросселем рассеяния, является работа транзисторов в режиме линейного (силового) переклю -чения тока. Такое переключение, предъявляет повышенные требования к драйверу управляющему этими транзисторами. Лучше всего применять драйверы на микро -схемах фирмы IR, которые непосредственно предназначены для управления верхними и нижними ключами мостового преобразователя. Они выдают чёткие импульсы в затворы управляемых транзисторов, и в отличие от трансформаторной системы управления, не требуют много мощности. Но трансформаторная система образует гальваническую развязку, и в случае выхода из строя силовых транзисторов, схема управления сохраняет свою работоспособность! Это неоспоримое преи -мущество не только с экономической стороны построения сварочного инвертора, но и со стороны простоты и надёжности. На Рис.18 Приведена схема БУ инвертора с драйверами, а на Рис.17 , с управлением через импульсный трансформатор. Выходной ток регулируется изменением частоты от 10кГц (Imax) до 50кГц(1т1п). Если поставить более высокочастотные транзисторы, то диапазон регулировок тока можно немного расширить.
При построении инвертора такого типа, необходимо учитывать точно такие же условия, как и при построении резонансного преобразователя, плюс все особенности построения преобразователя работающего в режиме линейного перключения. Это: жёсткая стабилизация напряжения питания задающего блока, режим возникновения ШИМ - недопустим! И все остальные особенности перечисленные в п.7 на стр.31. Если вместо управляющего трансформатора применяются драйверы на микросхе -мах, всегда помнить, что минус низковольтного питания будет соединён с сетью, и принять дополнительные меры безопасности!

Блок управления на IR2110


Рис.18

9. Конструктивные и схемные решения предложенные и опробованные
моими друзьями и последователями.

1. Силовой трансформатор намотан на одном сердечнике типа Ш20х28 2500НМС, первичная обмотка 15 витков, провод ПЭТВ-2, диаметр - 2,24мм. Вторичная 3+3 витка провод 2,24 в четыре провода, общее сечение 15,7мм кв.
Работает хорошо, обмотки практически не греются даже на больших токах, спокойно отдаёт в дугу более 160А! Но греется сам сердечник, примерно до 95 градусов, нужно ставить в обдув. Но зато выигрывается вес (0,5кГ) и освобождается объём!
2. Вторичная обмотка силового трансформатора мотается медной лентой 38х0,5мм, сердечник 2Ш20х28, первичная обмотка 14 витков, провода ПЭВ-2, диаметром 2,12.
Работает замечательно, напряжение ХХ около 66В, греется до 60 градусов.
3. Выходной дроссель намотан на одном Ш20х28, 7 витков многожильного медного провода, сечением от 10 до 20мм кв, на работе никак не сказывается. Зазор 1,5 мм, индуктивность 12мкГ.
4. Резонансный дроссель - намотан на одном Ш20х28, 2000НМ, 11 витков, провод ПЭТВ2, диаметром 2,24. Зазор 0,5мм. Частота резонанса 37кГц.
Работает хорошо.
5. Вместо Uc3825, применена 1156ЕУ2.
Работает отлично.
6. Входная ёмкость варьировалась от 470мкФ до 2000мкФ. Если не меняется зазор
в резонансном дросселе, то с увеличением ёмкости входного конденсатора, пропор -ционально растёт мощность, отдаваемая в дугу.
7. Была полностью исключена защита по току. Аппарат работает уже почти год и сгорать не собирается.
Это усовершенствование упростило схему до полного бестыдства. Но применение защиты от длительного КЗ и системы "горячий старт"+ "антипригар" практически полностью исключают возникновение перегрузки по току.
8. Выходные транзисторы поставлены на один радиатор через силиконо-керамические прокладки, типа "НОМАКОН".
Работают отлично.
9. Вместо 150EBU04 ставились по два параллельно 85EPF06. Работает отлично.
10. Изменена система регулировки тока, преобразователь работает на резонансной частоте, а регулировка выходного тока осуществляется изменением длительности управляющих импульсов.
Проверил, работает отлично! Ток регулируется практически от 0 и до мах! Схема аппарата с такой регулировкой представлена на рис.21.

Тр.1 - силовой трансформатор 2Ш20х28, первичка - 17 витков, ХХ=56В Д1-Д2 - HER208 Д3,Д5 - 150EBU04
Д6-Д9 - КД2997А
Р - запускающее релле, 24В, 30А - 250VAC
Др.3 - мотается на ферритовом колечке К28х16х9, 13-15 витков
монтажного провода сечением 0,75мм кв. Индуктивность не менее
200мкН.

Схема представленная на Рис.19 удваивает выходное напряжение. Удвоенное напряжение подаётся параллельно дуге. Такое включение облегчает поджиг на всех режимах работы, повышает стабильность дуги (дуга легко тянется до 2 см), улучшает качество сварного шва, можно варить электродами большого диаметра на малых токах, при этом не перегревая свариваемую деталь. Позволяет легко дозировать количество наплавляемого металла, при отводе электрода дуга не гаснет, но ток резко уменьшается. При повышенном напряжении легко зажигаются и горят электроды всех марок. При сварке тонкими электродами (1,0 - 2,5 мм) на малых токах достигается идеальное качество сварного шва, даже у "чайников". Мне удавалось четвёркой приварить лист толщиной 0,8мм к уголку толщиной 5мм (52х52). Напряжение ХХ без удвоения было 56В, с удвоителем 110В. Ток удвоителя ограничивается конденса -торами 0,22х630В типа К78-2, на уровне 4 - 5 Ампер в режиме дуги, и до 10А при КЗ. Как видим пришлось добавить ещё два диода для запускающего релле, при таком включении оно также является защитой от режима длительного КЗ, как и в схеме на Рис.5. Выходной дроссель Др.2 оказался не нужен, а это 0,5кГ! Дуга горит устойчиво! Оригинальность данной схемы заключается в том, что фаза удвоенного напряжения повёрнута на 180 градусов относительно силового, поэтому высокое напряжение после разряда выходных конденсаторов не блокирует силовые диоды, а заполняет удвоенным напряжением промежутки между импульсами. Именно этот эффект повышает стабильность дуги и улучшает качество шва!
Похожие схемы ставят итальянцы в промышленные переносные инверторы.

На Рис.20 показана схема сварочного инвертора с самой совершенной конфигурацией. Простота и надёжность, минимум деталей, ниже приведены его технические характеристики.

1. Напряжение питания 210 -- 240 В
2. Ток в дуге 20 - 200 А
3. Ток потребляемый от сети 8 - 22 А
4. Напряжение XX 110 В
5. Вес без корпуса менее 2.5 кг

Как видим, схема на Рис.20 не сильно отличается от схемы на Рис.5. Но это полностью законченная схема, она практически не нуждается в дополнительных системах поджига и стабилизации горения дуги. Применение удвоителя выходного напряжения позволило исключить выходной дроссель, увеличить выходной ток до 200А и на порядок улучшить качество сварных швов на всех режимах работы, от 20А до 200А. Дуга зажигается очень легко и приятно, устойчиво горят электроды почти всех типов. При сварке нержавеющих сталей, качество шва сделанного электродом, не уступает сварному шву сделанному в аргоне!
Все моточные данные аналогичны предыдущим конструкциям, только в силовом трансформаторе можно мотать первичную обмотку 17-18 витков, проводом 2,0-2,12 ПЭТВ-2 или ПЭВ-2. Сейчас нет смысла повышать выходное напряжение трансфор -матора, для отличной работы достаточно 50-55В, всё остальное сделает удвоитель. Резонансный дроссель точно такой конструкции, как в предыдущих схемах, только имеет увеличенный немагнитный зазор (подбирается экспериментально, ориентировочно 0,6 - 0,8мм).

Уважаемые читатели, вашему вниманию предложено несколько схем, но фактически это одна и таже силовая установка с различными дополнениями и усовершенствованиями. Все схемы были многократно испытаны и показали высокую надёжность, неприхотливость и отличные результаты при работе в различных климатических условиях. Для изготовления сварочного аппарата Вы можете взять любую из приведенных схем, воспользоваться предложенными изменениями и создать аппарат полностью удовлетворяющий Ваши требования. Практически ничего не меняя, только увеличивая или уменьшая зазор в резонансном дросселе, увеличивая или уменьшая радиаторы на выходных диодах и транзисторах, увеличивая или уменьшая мощность охладителя, Вы можете получить целую серию сварочных аппаратов, с максимальным выходным током от 100А до 250А и ПВ=100%. ПВ зависит только от системы охлаждения, и чем мощнее применяемые вентиляторы и больше площадь радиаторов, тем дольше сможет работать Ваш аппарат в непрерывном режиме при максимальном токе! Но увеличение радиаторов влечёт за собой увеличение размеров и веса всей конструкции, поэтому прежде чем приступить к изготовлению сварочного аппа -рата всегда нужно сесть и подумать для каких целей он Вам будет нужен! Как показала практика, ничего супер сложного в конструировании сварочного инвертора с использованием резонансного моста нет. Именно применение для этой цели резонансной схемы, позволяет на 100% избежать проблем связан -ных с монтажем силовых цепей, а при изготовлении силового прибора в до -машних условиях эти проблемы возникают всегда! Резонансная схема решает их автоматически, сохраняя и продляя жизнь силовым транзисторам и диодам!

10. Сварочный аппарат с фазовой регулировкой выходного тока

Схема представленная на Рис.21 наиболее привлекательна с моей точки зрения. Испытания показали высокую надёжность такого преобразователя. В этой схеме полностью использованы преимущества резонансного преобразователя, так как частота не меняется, выключение силовых ключей происходит всегда в нуле тока, а это важный момент с точки зрения управляемости ключей. Регулировка тока осуществляется изменением длительности импульсов управления. Такое схемное решение позволяет изменять выходной ток практичес -ки от 0 и до максимального значения (200А). Шкала регулировки полностью линей -ная! Изменение длительности управляющих импульсов достигается путём подачи изменяющегося напряжения в диапазоне 3-4В на 8 ножку микросхемы Uc3825. Изменение напряжения на этой ножке с 4В до 3В даёт плавное изменение длительности цикла от 50% до 0%! Регулировка тока таким способом, позволяет избе -жать такого неприятного явления, как совпадение резонанса с режимом КЗ, возмож -ного при частотном регулировавнии. Следовательно исключается ещё один возмож -ный режим перегрузки! Как следствие, можно вообще убрать схему защиты по току, единожды настроив максимальный выходной ток зазором в резонансном дросселе. Настраивается аппарат точно так, как и все предыдущие модели. Единственное, что необходимо сделать, это перед началом настройки выставить максимальную дли -тельность цикла, установив на 8 ножке напряжение 4В, если этого не сделать, то резонанс будет смещён, и на максимальной мощности точка переключения ключей может не совпадать с нулём тока. При больших отклонениях, это может привести к динамической перегрузке силовых транзисторов, их перегреву и выходу из строя. Применение удвоителя напряжения на выходе даёт возможность уменьшить нагрузку на сердечник, увеличив количество витков первичной обмотки до 20. Выходное напряжение ХХ при этом получается 46,5В, соответственно после удвои -теля 93В, что отвечает всем нормам безопасности для инверторных сварочных источников! Понижение выходного напряжения силового блока позволяет использовать более низковольтные (более дешёвые) выходные диоды. Можно смело ставить 150EBU02 или BYV255V200. Ниже приведены моточные данные моего сварочного инвертора последней модели.
Тр.1 Провод ПЭВ-2, диаметр 1,81мм, количество витков -20. Вторичная обмотка 3+3, 16мм кв, мотается в 4 провода диаметром 2,24. Конструкция аналогична предыдущим. Сердечник Е65, №87 фирмы ЭПКОС. Наш приблизительный аналог 20х28, 2200НМС. Сердечник один!
Др.1 10 витков, ПЭТВ-2 диаметром 2,24мм. Сердечник 20х28 2000НМ. Зазор 0,6-0,8мм. Индуктивность 66мкГ для мах тока в дуге 180-200А. Др.3 12 витков монтажного провода, сечение 1мм кв, кольцо 28х16х9, без зазора, 2000НМ1
При таких параметрах, резонансная частота около 35кГц. Как видно из схемы -защиты по току нет, выходного дросселя нет, выходных конденсаторов нет. Силовой трансформатор и резонансный дроссель намотаны на одиночных сердечниках типа Ш20х28. Всё это позволило уменьшить вес и высвободить объём внутри корпуса, и как следствие облегчить температурный режим всего аппарата, и спокойно поднять ток в дуге до 200А!

Список полезной литературы.

1. "Радио" №9, 1990г.
2. " Микросхемы для импульсных источников питания и их применение", 2001г. Издательство "ДОДЕКА".
3. " Силовая электроника", Б.Ю. Семёнов, Москва 2001г.
4. " Силовые полупроводниковые ключи", П.А. Воронин, "ДОДЕКА" 2001г.
5. Каталог п/п приборов фирмы NTE.
5. Справочные материалы фирмы IR.
6. ТОЭ, Л.Р.Нейман и П.Л.Калантаров, Часть 2.
7. Сварка и резка металлов. Д.Л.Глизманенко.
8. "Микросхемы для линейных источников питания и их применение", 2001г. Издательство "ДОДЕКА".
9. "Теория и расчёт трансформаторов ИВЭ". Хныков А.В. Москва 2004г.

Самодельный сварочный инвертор рядом с компьютерным блком питания:

Страница подготовлена по мотивам книги "Сварочный инвертор - это просто" В.Ю.Негуляев

Понравилась статья? Поделитесь ей