Контакты

Скачать схему частотомера. "Электроника и Радиотехника"домашнему мастеру! Основные технические характеристики


Этот прибор имеет не только большой верхний предел измеряемой частоты, но и ряд дополнительных функций. Он измеряет уход частоты от начального значения, длительность импульсов и пауз между ними, подсчитывает число импульсов. Его можно использовать и как делитель частоты входного сигнала с задаваемым в широких пределах коэффициентом деления.

Предлагаемый частотомер содержит шесть микросхем - компаратор напряжения AD8611ARZ , синтезатор частоты LMX2316TM , D-триггер 74HC74D , селектор-мультиплексор 74HC151D , микроконтроллер PIC16F873A-1/SP и интегральный стабилизатор напряжения TL7805. Результаты измерения он выводит на символьный ЖКИ WH1602B .

Основные технические характеристики

Интервал измеряемой частоты

импульсов с уровнями ТТЛ, Гц...............0,1...8·10 7

аналоговых периодических сигналов произвольной формы напряжением более 100 мВэфф, Гц.....................1...8·10 7

синусоидальных ВЧ-сигналов напряжением более 100 мВэфф, МГц...............20...1250

Длительность счёта при измерении частоты, мс......10 4 , 10 3 , 100, 10

Интервал измеряемой длительности импульсов, мкс........10...10 6

Максимальная частота следования подсчитываемых импульсов, кГц...............100

Максимальное число подсчитанных импульсов.....100 000 000

Измеряемый уход частоты

импульсов на входе ТТЛ или сигнала на аналоговом входе, Гц..........±1...±10 6

сигнала на входе ВЧ, кГц...................±1...±10 5

Коэффициент деления частоты сигнала

поданного на аналоговый вход..............3 - 16383

поданного на вход ВЧ................1000 - 65535

Уровни выходных импульсов делителя частоты.............ТТЛ

Длительность выходных импульсов делителя частоты, мкс.......................0,5

Напряжение питания (постоянное), В...................9.16

Потребляемый ток, мА......100...150

При выключении прибора установленные режимы его работы микроконтроллер запоминает в своём EEPROM и восстанавливает при включении.

Схема частотомера изображена на рис. 1. Тактовый генератор микроконтроллера DD3 стабилизирован кварцевым резонатором ZQ1. Подстроечный конденсатор C13 позволяет установить тактовую частоту в точности равной 4 МГц. Стабилизатор напряжения +5 В собран на микросхеме DA2. Подстроечным резистором R23 регулируют яркость подсветки экрана ЖКИ HG1. Оптимальную контрастность изображения на нём устанавливают подстроечным резистором R21.

Рис. 1. Схема частотомера

Кнопками SB1-SB3 управляют прибором. Кнопка SB1 служит для выбора измеряемого параметра. Кнопкой SB2 выбирают разъём, на который подают измеряемый сигнал. В зависимости от частоты и формы входного сигнала это может быть XW1 (импульсы логических уровней частотой 0,1 Гц...80 МГц), XW2 (аналоговые сигналы произвольной формы частотой 1 Гц...80 МГц) или XW3 (сигналы частотой 20...1250 МГц). Кнопкой SB3 запускают и останавливают измерение в режимах счётчика импульсов и измерения ухода частоты. Длительным (более 1 с) нажатием на эту кнопку переходят из режимаизмерения частоты в режим её деления и вывода результата на разъём XW1. Когда кнопки не нажаты, на входах микроконтроллера, с которыми они соединены, резисторы R12-R14 поддерживают высокие уровни.

Резисторы R4 и R6 создают постоянное смещение около 100 мВ на неинвертирующем входе компаратора DA1. Резисторы R5 и R7 - цепь положительной обратной связи, нужной для получения гистерезиса в характеристике переключения компаратора. Диоды VD1 и VD2 вместе с резистором R2 образуют двухсторонний ограничитель входного напряжения на инвертирующем входе компаратора.

Микросхема DD1, основное назначение которой - работа в синтезаторах частоты диапазона 1,2 ГГц, содержит два делителя частоты с переменным коэффициентом деления, которые и используются в описываемом приборе для деления частоты входных сигналов, подаваемых на разъёмы XW2 и XW3, в заданное число раз. Микроконтроллер устанавливает коэффициенты деления и режим работы этой микросхемы, подавая команды по её последовательному интерфейсу (входы Clock, Data, LE). В зависимости от установленного режима на выход Fo/LD поступает результат работы одного из этих делителей. Резистор R19 и конденсатор C19 образуют фильтр питания микросхемы DD1, а диоды VD3 и VD4 защищают от перегрузки вход одного из её делителей частоты, непосредственно связанный с разъёмом XW3. На триггере DD4.1 собран одновибратор, формирующий из выходных сигналов делителей частоты импульсы длительностью 0,5 мкс. Его времязадающая цепь - резистор R17 и конденсатор C10.

Формирователь импульсов, подаваемых на разъём XW1, собран на транзисторе VT1 с коллекторной нагрузкой - резистором R8. Он работает, когда на выходе RC5 микроконтроллера установлен высокий логический уровень. В противном случае формирователь выключен и не оказывает влияния на подаваемые на разъём XW1 внешние сигналы. Поэтому разъём XW1 может быть как входным при измерении частоты и длительности логических сигналов, а также при счёте импульсов, так и выходным в режимах деления частоты. Резистор R11 служит для защиты входа 0 селектора-мультиплексора DD2 от случайно поданных на разъём XW1 сигналов большой амплитуды.

Селектор-мультиплексор по командам микроконтроллера подаёт на его предназначенные для измерения частоты и длительности импульсов входы либо импульсы уровней ТТЛ с разъёма XW1, либо сигналы, поступившие на разъём XW2 и преобразованные в такие импульсы компаратором DA1, либо сигналы, поступившие на разъём XW3 и прошедшие через делитель частоты микросхемы DD1. Микроконтроллер выполняет основные операции измерения частоты, длительности и счёта импульсов. Он же выводит результаты измерений на ЖКИ HG1 и управляет работой всего прибора. Программа микро-контроллера написана на языке ассемблера MASM, входящего в состав среды разработки программ MPLAB IDEv7.5.

В режимах измерения частоты микроконтроллер подсчитывает импульсы, поступившие на вход T0CKI в течение выбранного пользователем измерительного интервала (0,01, 0,1, 1 или 10 с). При измерении частоты сигнала, поданного на разъём XW3, его частоту предварительно делит на 1000 один из делителей микросхемы DD1.

При измерении длительности импульсов высокого логического уровня микроконтроллер по нарастающему перепаду измеряемого импульса на входе INT начинает счёт импульсов частотой 1 МГц, полученных делением своей тактовой частоты. Он прекращает этот счёт по спадающему перепаду измеряемого импульса. В случае измерения длительности импульса низкого уровня счёт начинается по его спадающему перепаду, а завершается по нарастающему.

Как только включён режим измерения ухода частоты, микроконтроллер выполняет первое измерение частоты входного сигнала, затем периодически повторяет эти измерения. Программа вычитает результат первого измерения из каждого последующего и выводит текущую разность на индикатор. После остановки этого режима на ЖКИ отображаются максимальные зафиксированные завремя измерения отклонения частоты вниз и вверх от начальной.

Для измерения частоты следования логических импульсов с уровнями ТТЛ кнопкой SB2 выбирают входной разъём XW1. Микроконтроллер формирует на выходах RC0-RC2 код 000, переводя этим селектор DD2 в состояние, при котором сигнал с разъёма XW1 поступает на входТОСК1 микроконтроллера для измерения частоты и на его же вход INT для измерения длительности импульсов. Результаты измерений программа выводит на ЖКИ HG1 (рис. 2), причём длительности импульсов высокого (H) и низкого (L) уровней на экране чередуются. Код в правой части верхней строки означает заданное время счёта: "10" - 10 с, "1" - 1 с, ",1" - 0,1 с и ",01" - 0,01 с. В правой части нижней строки выводится условное обозначение выбранного входного разъёма: TTL - XW1, VHF - XW2, UHF - XW3.

Рис. 2. Результаты измерений, выводимые программой на ЖКИ HG1

Измеряя частоту аналоговых сигналов (до 80 МГц), кнопкой SB2 выбирают входXW2. На выходах RC0-RC2 микроконтроллер формирует код 001, переводя мультиплексор DD2 в положение, в котором сигнал с разъёма XW2, преобразованный в прямоугольные импульсы компаратором DA1, поступает на вход TOCKI микроконтроллера. Программа измеряет частоту сигнала и выводит результат на ЖКИ (рис. 3).

Рис. 3. Результаты измерений, выводимые программой на ЖКИ HG1

Для измерения ВЧ-сигналов частотой до 1250 МГц кнопкой SB2 выбирают входной разъём XW3. С него сигнал поступает на вход f IN имеющегося в микросхеме DD1 делителя частоты. Коэффициент деления задан микроконтроллером равным 1000. Сигнал с выхода делителя частоты, преобразованный в импульсы длительностью около 0,5 мкс одновибратором на триггере DD4.1, поступает через мультиплексор DD2 на вход TOCKI микроконтроллера. Мультиплексор установлен в нужное для этого состояние кодом 010 на выходах RC0-RC2 микроконтроллера. Программа микроконтроллера измеряет частоту и с учётом коэффициента деления выводит результат на ЖКИ (рис. 4).

Рис. 4. Результаты измерений, выводимые программой на ЖКИ HG1

Подлежащие счёту импульсы подают на входной разъём XW1 или XW2. Кнопкой SB2 выбирают один из этих входов, а кнопкой SB1 - режим COUNTER (рис. 5). Счёт запускают нажатием на кнопку SB3, что сопровождается заменой на экране метки OFF (выключено) меткой ON (включено). Для остановки счёта на кнопку SB3 нажимают повторно, при этом метку ON сменяет метка OFF. Накопленное за время от запуска до остановки число импульсов программа показывает на ЖКИ.

Рис. 5. Результаты измерений, выводимые программой на ЖКИ HG1

Чтобы измерить уход частоты, сигнал (в зависимости от его формы и частоты) подают на один из входных разъёмов XW1-XW3, выбирают кнопкой SB2 этот разъём, а кнопкой SB1 - функцию "+/-FREQUENCV (её название сопровождается меткой OFF). Измерение запускают нажатием на кнопку SB3, при этом метку OFF сменяет метка ON. Прибор измеряет уход частоты и выводит его текущее значение на ЖКИ (рис. 6). После повторного нажатия на кнопку SB3, останавливающего измерение, на ЖКИ появляются максимальные зафиксированные за время измерения значения ухода частоты вверх и вниз от исходной (рис. 7).

Рис. 6. Результаты измерений, выводимые программой на ЖКИ HG1

Рис. 7. Результаты измерений, выводимые программой на ЖКИ HG1

Для деления частоты аналогового сигнала частотой до 80 МГц кнопкой SB2 выбирают входной разъём XW2 и подают на него сигнал, частота которого подлежит делению. С выхода компаратора DA1 он поступает на вход OSCIN делителя частоты R_Counter микросхемы DD1. Микроконтроллер задаёт по последовательному интерфейсу необходимый коэффициент деления этого делителя и подключает его выход к выходу Fo/LD микросхемы. Нажатиями на кнопку SB1 коэффициент деления уменьшают, а на кнопку SB2 - увеличивают. Чем дольше удерживают кнопку нажатой, тем быстрее изменяется коэффициент.

На выходе RC5 микроконтроллер устанавливает высокий уровень, переключая разъём XW1 в режим выхода. На своих выходах RC0-RC2 микроконтроллер формирует код 000, поэтому сигнал, выведенный на разъём, поступает и на входТ0СКI микроконтроллера для измерения частоты. Длительность импульсов в этом режиме не измеряется.

Рис. 8. Результаты измерений, выводимые программой на ЖКИ HG1

На рис. 8 показан результат деления частоты 19,706 МГц поданного на разъём XW2 сигнала на 100. В этом случае на выходе XW1 с частотой 197,06 кГц следуют импульсы высокого логического уровня длительностью 0,5 мкс. Сигналы частотой от 50 до 1200 МГц подают для деления на разъём XW3. Они обрабатываются аналогично, отличие лишь в том, что в операции участвует более высокочастотный делитель частоты N-Counter микросхемы DD1. На рис. 9 показан результат деления частоты 200,26 МГц на 2000. Частота на выходе - 100,13 кГц.

Рис. 9. Результаты измерений, выводимые программой на ЖКИ HG1

Частотомер смонтирован на печатной плате из фольгированного с двух сторон стеклотекстолита толщиной 1 мм. Её чертёж показан на рис. 10, а размещение элементов - на рис. 11. Постоянные резисторы и большинство конденсаторов имеют типоразмер 0805 для поверхностного монтажа. Подстроечные резисторы R21 и R23 - SH-655MCL, подстроечный конденсатор C13 - TZC3P300A110R00. Оксидные конденсаторы С4 и C6 - алюминиевые с проволочными выводами.

Рис. 10. Печатная плата частотомера

Рис. 11. Размещение элементов на плате

Разъёмы XW1-XW3 - 24_BNC-50-2-20/133_N . Они соединены с платой отрезками коаксиального кабеля с волновым сопротивлением 50 Ом длиной около 100 мм. Кнопки SB1-SB3 - TS-A3PG-130. Индикатор HG1 укреплён над платой на стойках высотой 10 мм винтами М3.

Прибор собран в пластмассовом корпусе Z-28 . На его передней панели вырезано прямоугольное отверстие размерами 70x25 мм для экрана ЖКИ и просверлены три отверстия диаметром 3 мм под кнопки. Сами кнопки установлены на стеклотекстолитовой плате размерами 100x12x1,5 мм, прикреплённой к передней панели с обратной стороны винтами M3. С левой стороны корпуса установлено гнездо питания, а с правой - его выключатель. Входные байонетные разъёмы размещены на задней стенке корпуса.

Налаживание частотомера заключается в следующем:

Установите подстроечным резистором R21 оптимальную контрастность изображения на экране ЖКИ;

Установите подстроечным резистором R23 необходимую яркость подсветки ЖКИ;

Установите подстроечным конденсатором C13 тактовую частоту микроконтроллера в точности равной 4 МГц. Для этого к разъёму XW1 подключите цифровой частотомер (Ч3-63 или любой другой), включите налаживаемый прибор при нажатой кнопке SB3 (при этом на ЖКИ должна появиться надпись "TEST") и, вращая ротор подстроечного конденсатора C13, добейтесь показаний внешнего частотомера, максимально близких к 100000 Гц. Не забывайте, что погрешность установки этой частоты непосредственным образом влияет на погрешность налаживаемого прибора.

Литература

1. Ultrafast, 4 ns Single-Supply Comparators AD8611/AD8612. - URL: http://www.analog. com/media/en/technical-documentation/ data-sheets/AD8611_8612.pdf (02.11.2015).

2. PLLatinum™ LowPower Frequency Synthesizer for RF Personal Communications LMX2306 550 MHz, LMX2316 1.2 GHz, LMX2326 2.8 GHz. - URL: http://www.ti.com/lit/ds/ symlink/lmx2326.pdf (02.11.2015).

3. 74HC74, 74HCT74 Dual D-type flip-flop with set and reset; positive edge-trigger. - URL: http://www.nxp.com/documents/data_sheet/ 74HC_HCT74.pdf (02.11.2015).

4. 74HC151, 74HCT151 8-input multiplexer. - URL: http://www.nxp.com/documents/data_ sheet/74HC_HCT151.pdf (02.11.2015).

5. PIC16F87XA Data Sheet 28/40/44-Pin Enhanced Flash Microcontrollers. - URL: http://akizukidenshi.com/download/PIC16F 87XA.pdf (02.11.2015).

6. WH1602B character 16x2. - URL: http:// www.winstar.com.tw/download.php?ProID= 22 (17.11.15).

7. Coaxial Cable Connector: 24_BNC-50-2-20/133_N. - URL: http://www.electroncom. ru/pdf/hs/bnc/24bnc50-2-20_133n.pdf (16.11.15).

8. Корпус Z-28. - URL: http://files.rct.ru/ pdf/kradex/z-28.pdf (16.11.15).

Чертёж печатной платы в формате Sprint Layout 5.0 и программу микроконтроллера можно скачать .


Дата публикации: 16.02.2016

Мнения читателей
  • Владимир / 20.01.2017 - 10:55
    Вышли еще две версии частотомера. Третья версия опубликована в журнале "Радиолюбитель" №8,9. Четвертая: https://cloud.mail.ru/public/4EKo/QaTMuiDMv


Первой конструкцией на цифровых ИС, которую изготовляли радиолюбители в 80-90 годах, как правило, были электронные часы или частотомер.
Такой частотомер и сегодня можно применять при градировке приборов, или использовать в качестве отсчетного устройства в генераторах и любительских передатчиках, при налаживании различных радиоэлектронных устройств. Прибор может заинтересовать тех, у кого без дела лежат микросхемы серии К155, либо начинающих знакомиться с устройствами автоматики и вычислительной техники.

Описываемый прибор позволяет измерять частоту электрических колебаний, период и длительность импульсов, а также может работать как счетчик импульсов. Рабочая частота от единиц Герц до нескольких десятков МГц при входном напряжении до 50 мВ. Предельная частота работы счетчиков на интегральных микросхемах К155ИЕ2 - около 15 МГц. Однако следует иметь в виду, что фактическое быстродействие триггеров и счетчиков превышает указанное значение 1,5... 2 раза, поэтому отдельные экземпляры TTL микросхем допускают работу на более высоких частотах.

Минимальная цена младшего разряда составляет 0,1 Гц при измерении частоты и 0,1 мкс при измерении периода и длительности.
Принцип действия частотомера основан на измерении числа импульсов, поступающих на вход счетчика в течение строго определенного времени.


Принципиальная схема показана на рис.1


Исследуемый сигнал через разъем X1 и конденсатор С1 поступает на вход формирователя прямоугольных импульсов.

Широкополосный усилитель-ограничитель собран на транзисторах V1, V2 и V3. Полевой транзистор V1 обеспечивает прибору высокое входное сопротивление. Диоды V1 и V2 предохраняют транзистор V1 от повреждения при случайном попадании на вход прибора высокого напряжения. Цепочкой C2-R2 осуществляют частотную коррекцию входа усилителя.



Транзистор V4, включенный как эмитерный повторитель, согласует выход усилителя-ограничителя с входом логического элемента D6,1 микросхемы D6, обеспечивающей дальнейшее формирование прямоугольных импульсов, которые через электронный ключ поступают на устройство управления на микросхеме D9, сюда же поступают и импульсы образцовой частоты, открывающие ключ на определенное время. На выходе этого ключа появляется пачка импульсов. Число импульсов в пачке подсчитывает двоично-десятичный счетчик, его состояние после закрывания ключа отображает блок цифровой индикации.


В режиме счета импульсов управляющее устройство блокирует источник образцовой частоты, двоично-десятичный счетчик ведет непрерывный счет поступающих на его вход импульсов, а блок цифровой индикации отображает результаты счета. Показания счетчика сбрасываются нажатием кнопки «Сброс».

Задающий тактовый генератор собран на микросхеме D1 (ЛА3) и кварцевом резонаторе Z1 на частоту 1024 кГц. Делитель частоты собран на микросхемах К155ИЕ8; К155ИЕ5 и четырех К155ИЕ1. В режиме измерения точность установки «МГц», «кГц» и «Гц» задается кнопочными переключателямиSA4 и SA5.

Блок питания частотомера (рис.3) состоит из трансформатора Т1, с обмотки II которого после выпрямителя VDS1, стабилизатора напряжения на микросхеме DА1 и фильтра на конденсаторах С4 – С11, напряжение +5V подается для питания микросхем.

Напряжение 170V с обмотки III трансформатора Тр1 через диод VD5 используется для питания газоразрядных цифровых индикаторов Н1..H6.

В формирователе импульсов полевой транзистор КП303Д (V3) можно заменить на КП303 или КП307 с любым буквенным индексом, транзистор КТ347 (V5) -на КТ326, а КТ368 (V6, V7) - на КТ306.

Дроссель L1 типа Д-0,1 или самодельный - 45 витков провода ПЭВ-2 0,17, намотанных на каркасе диаметром 8 мм. Все переключатели типа П2К.


Налаживание прибора сводится к проверке правильности монтажа и измерении питающих напряжений. Правильно собранный частотомер уверенно выполняет свои функции, «капризным» узлом является лишь входной формирователь, настройке которого надо уделить максимум старания. Заменив R3 и R4 переменными резисторами 2,2 кОм и 100 Ом, надо на резисторе R5 установить напряжение примерно 0,1...0,2V. Подав от генератора сигналов на вход формирователя синусоидальное напряжение амплитудой около 0,5V, и заменив резистор R6 переменным резистором с номиналом 2,2 кОм, надо его подстроить так, чтобы на выходе элемента D6.1 появились прямоугольные импульсы. Постепенно понижая входной уровень и повышая частоту, надо подбором элементов R6 и СЗ добиться устойчивой работы формирователя во всем рабочем диапазоне. Возможно, при этом придется подобрать сопротивление резистора R9. В процессе налаживания все переменные резисторы должны иметь выводы длиной не более 1...2 см.


Когда налаживание будет завершено, следует их выпаивать по одному и заменять постоянными резисторами подходящего номинала, каждый раз проверяя работу формирователя.


В конструкции вместо индикаторов ИН-17 можно применить газоразрядные индикаторы ИН-8-2, ИН-12 и т. п.

В формирователе импульсов транзисторы КТ368 можно заменить на КТ316 или ГТ311, вместо КТ347 можно использовать КТ363, ГТ313 или ГТ328. Диоды V1, V2 и V4 можно заменить на КД521, КД522.




Схема и плата в формате sPlan7 и Sprint Layout - schema.zip *


* Данная схема была собрана мной в далеком 1988 году в одном корпусе со звуковым генератором и использовалась как цифровая шкала.

Как самостоятельный прибор оформлен недавно, поэтому возможно, где-то в схему и рисунок печатной платы могла закрасться ошибка..



Список Литературы:

В помощь радиолюбителю №084, 1983 г.

Цифровые Устройства на Интегральных Микросхемах - © Издательство «Радио и связь», 1984.

Журнал «Радио»: 1977, № 5, № 9, № 10; 1978, № 5; 1980, № 1; 1981, № 10; 1982, № 1, № 11; № 12.

Радиолюбительские цифровые устройства. - М.: Радио и связь, 1982.

Схема очень простого цифрового частотомера на зарубежной элементной базе

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

В этой статье на сайте Радиолюбитель мы рассмотрим очередную простую радиолюбительскую схему частотомер . Частотомер собран на зарубежной элементной базе, которая подчас бывает доступнее отечественной. Схема проста и доступна для повторения начинающему радиолюбителю .

Схема частотомера :

Частотомер выполнен на измерительных счетчиках HFC4026BEY, микросхемах серии CD40 и семисегментных светодиодных индикаторах с общим катодом HDSP-H211H. При напряжении источника питания 12 вольт частотомер может измерять частоту от 1 Гц до 10 МГц.

Микросхема HFC4026BEY является представителем высокоскоростной КМОП логики и содержит десятичный счетчик и дешифратор для семисегментного светодиодного индикатора с общим катодом. Входные импульсы подаются на вход “С”, который имеет триггер Шмитта, что позволяет значительно упростить схему входного формирователя импульсов. Кроме того, вход счетчика “С” можно закрыть подав логическую единицу на вывод 2 микросхемы. Таким образом отпадает надобность во внешнем ключевом устройстве пропускающим импульсы на вход счетчика в период измерения. Выключить индикацию можно подав логический ноль на вывод 3. Все это упрощает схему управления частотомера.

Входной усилитель выполнен на транзисторе VT1 по схеме ключа. Он преобразует входной сигнал в импульсы произвольной формы. Прямоугольность импульсам придает триггер Шмитта, имеющийся на входе “С” микросхемы. Диоды VD1- VD4 ограничивают величину амплитуды входного сигнала. Генератор опорных сигналов выполнен на микросхеме CD4060B. В случае использования кварцевого резонатора на частоту 32768 Гц с вывода 2 микросхемы снимается частота 4 Гц, которая поступает на схему управления состоящего из десятичного счетчика D2 и двух RS триггеров на микросхеме D3. В случае использования резонатора на 16384 Гц (с китайских будильников) частоту 4 Гц нужно будет снимать не со 2 вывода микросхемы, а с 1-го.

Микросхему CD4060B можно заменить другим аналогом типа хх4060 (например NJM4060). Микросхему CD4017B можно заменить также другим аналогом типа хх4017, либо отечественной микросхемой К561 ИЕ8, К176 ИЕ8. Микросхема CD4001B прямой аналог наших микросхем К561ИЕ5, К176ИЕ5. Микросхему HFC4026BEY можно заменить ее полным аналогом CD4026, но при этом максимальная измеряемая частота будет 2 МГц. Схема входного ула частотомера примитивная, ее можно заменить каким-то более совершенным узлом.

Одним из приборов-помощников радиолюбителя должен быть частотомер. С его помощью легко обнаружить неисправность генератора, измерить и подстроить частоту. Генераторы очень часто встречаются в схемах. Это приемники и передатчики, часы и частотомеры, металлоискатели и различные автоматы световых эффектов…

Особенно удобно пользоваться частотомером для подстройки частоты, например при перестройки радиостанций, приёмников или настройки металлоискателя.

Один из таких несложных наборов я недорого приобрёл на сайте китайского магазина здесь: GEARBEST.com

Набор содержит:

  • 1 x PCB board (печатная плата);
  • 1 x микроконтроллер PIC16F628A;
  • 9 x 1 кОм резистор;
  • 2 x 10 кОм резистор;
  • 1 x 100 кОм резистор;
  • 4 x диоды;
  • 3 x транзисторы S9014, 7550, S9018;
  • 4 x конденсаторы;
  • 1 x переменный конденсатор;
  • 1 x кнопка;
  • 1 x DC разъём;
  • 1 x 20МГц кварц;
  • 5 x цифровые индикаторы.

Описание частотомера

  • Диапазон измеряемых частот: от 1 Гц до 50 МГц;
  • Позволяет измерять частоты кварцевых резонаторов;
  • Точность разрешение 5 (например 0,0050 кГц; 4,5765 МГц; 11,059 МГц);
  • Автоматическое переключение диапазонов измерения частоты;
  • Режим энергосбережения (если нет изменения показаний частоты — автоматически выключается дисплей и на короткое время включается;
  • Для питания Вы можете использовать интерфейс USB или внешний источник питания от 5 до 9 В;
  • Потребляемый ток в режиме ожидания — 11 мА

Схема содержит небольшое количество элементов. Установка проста — все компоненты впаиваются согласно надписям на печатной плате.

Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой. Индикаторы, микросхема и её панелька для исключения повреждений ножек вставлены в пенопласт.

Принципиальная схема частотомера

Напряжение на выводах микроконтроллера

(измерения мультиметром)

Генератор для проверки кварцев

Приступаем к сборке

Высыпаем на стол содержимое пакета. Внутри находятся печатная плата, сопротивления, конденсаторы, диоды, транзисторы, разъемы, микросхема с панелькой и индикаторы.

Ну и вид на весь набор в полностью разложенном виде.

Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

Я начинал сборку с установки пассивных элементов: резисторов, конденсаторов и разъёмов. При монтаже резисторов следует немного узнать об их цветовой маркировке из предыдущей статьи. Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет) и поэтому также посоветую просто измерить сопротивление резисторов при помощи мультиметра. И результат будем знать и за одно его исправность.

Конденсаторы маркируются также как и резисторы.
Первые две цифры - число, третья цифра - количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22 пФ.
Они маркируются просто указанием емкости так как емкость меньше 100 пФ, т.е. меньше трехзначного числа.

Резисторы и керамические конденсаторы можно впаивать любой стороной — здесь полярности нет.

Выводы резисторов и конденсаторов я загибал, чтобы компонент не выпал, лишнее откусывал, а затем опаивал паяльником.

Немного рассмотрим такой компонент, как — подстроечный конденсатор. Это конденсатор, ёмкость которого можно изменять в небольших пределах (обычно 10-50пФ). Это элемент тоже неполярный, но иногда имеет значение как его впаивать. Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. Чтобы было меньше влияния отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом, соединялся с общей шиной платы.

Разъемы — сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, плохо облуживается. Потому нужно ножки разъёмов дополнительно почистить и облудить.

Теперь впаиваем кварцевый резонатор, он изготовлен под частоту 20МГц, полярности также не имеет, но под него лучше подложить диэлектрическую шайбочку или приклеить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.

Длительность пайки каждой ножки не должна превышать 2 сек! Между пайками ножек должно пройти не менее 3 сек на остывание.

Ну вот собственно и всё!

Теперь осталось смыть остатки канифоли щёткой со спиртом.

Теперь красивее 🙂

Осталось правильно вставить микросхему в свою «кроватку» и подключить питание к схеме.

Питание должно быть В пределах от 5 до 9 В — постоянное стабилизированное без пульсаций. (В схеме нет ни одного эл.конденсатора по питанию.)

Не забудьте у микросхемы есть с торца ключ — он располагается у вывода №1! Не следует полагаться на надпись названия микросхемы — она может быть написана и к верх ногами.

При подключении питания и отсутствия сигнала на входе высвечивается 0 .

Первым делом нашёл кучу кварцев и начал проверять. Следует отметить, что частота кварца, например 32,768 кГц не может быть измерена, т.к. измерение ограничивается в диапазоне от 1 МГц.

Можно измерить, например 48 МГц, но следует иметь ввиду, что будет измерены гармонические колебания кварцевого генератора. Так 48 МГц будет измерена основная частота 16 МГц.

Подстроечным конденсатором можно подстроить показания частотомера по эталонному генератору или сравнить с заводским частотомером.

Режим программирования частотомера позволяет вычесть четыре основные запрограммированные ПЧ частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц, а также любую собственную частоту.

Таблица алгоритма програмирования

Чтобы войти в режим программирования (Prog ) нужно нажать и удерживать кнопку в течении 1-2 сек.

Затем нажимаем кнопку и поочередно пролистываем меню:

«Quit » — «Выход »: прерывает режим программирования, ничего не сохраняя.

«Add » — «Добавление »: сохранение измеренной частоты и в дальнейшем эта частота будет складываться с измеряемыми частотами.

«Sub » — «Вычитание »: сохранение измеренной частоты и в дальнейшем она будет вычитаться с измеряемыми частотами.

«Zero «- «Ноль » — обнуляет все ранее запрограммированные значения.

«table » — «Таблица «: в этой таблице можно выбрать основные запрограммированные частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц. После выбора записи (длительное нажатие), вы вернетесь в «Главное меню» и выберите пункт «Add » — «добавить » или «Sub » — «убавить «.

«PSave » / «NoPSV «: включает / отключает режим энергосбережения. Дисплей отключается если нет изменения частоты некоторое время.

Если показания сильно отличаются, то возможно включена предустановка. Чтобы её отключить войдите в режим программирования и затем нажимая кнопку выберите «Zero» и удерживайте пока не начнёт мигать, затем отпустите её.

Интересный обучающий конструктор. Собрать частотомер под силу даже начинающему радиолюбителю.

Качественно изготовленная печатная плата, прочное защитное покрытие, небольшое количество деталей благодаря программируемому микроконтроллеру.

Конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с немало важным для радиолюбителя прибором - частотомером.

Доработка частотомера

Внимание! В заключение хочется отметить, что входной измеряемый сигнал подаётся непосредственно на вход микросхемы, поэтому для лучшей чувствительности и главное, защиты микросхемы нужно добавить по входу усилитель-ограничитель сигнала.

Можно спаять один из предложенных ниже.

Сопротивление R6 на верхней и R9 на нижней схеме подбирается в зависимости от напряжения питания и устанавливается на его левом выводе 5 В. При питании 5 В сопротивление можно не ставить.

… или простой, на одном транзисторе:

Номиналы сопротивлений указаны при питании 5В. Если у Вас питание усилителя другим напряжением, то подберите номинал R2,3 чтобы на коллекторе транзистора было половина питания.

Схема похожего частотомера с входным каскадом усилителя.

Вторая доработка. Для увеличения измеряемого потолка частоты можно собрать к частотомеру делитель частоты. Например, схемы ниже:



Данная статья предназначена для тех, кто не хочет «заморачиваться» с МК.

Каждый радиолюбитель в процессе своей творческой деятельности сталкивается с необходимостью оборудования своей «лаборатории» необходимыми измерительными приборами.
Одним из приборов - это частотомер. У кого есть возможность, тот покупает готовый, а кто-то и собирает свою конструкцию, по своим возможностям.
Сейчас много различных конструкций, выполненных на МК, но встречаются и на цифровых микросхемах (как говорится «гугл в помощь!»).
После «ревизии» в своих закромах обнаружилось, что имеются в наличии цифровые микросхемы серий 155, 555, 1533, 176, 561, 514ИД1(2) (простая логика - ЛА, ЛЕ, ЛН, ТМ, средней сложности - ИЕ, ИР, ИД, еще 80-90 г.г. выпуска, выбрасывать их - «жаба» задавила!) на которых можно собрать не сложный приборчик, из тех компонентов, которые были под рукой в данный момент.
Захотелось просто творчества, поэтому приступил к разработке частотомера.

Рисунок 1.
Внешний вид частотомера.

Блок-схема частотомера:

Рисунок 2.
Блок-схема частотомера.

Входное устройство-формирователь.

Схему взял из журнала «Радио» 80-х годов (точно не помню, но вроде как частотомер Бирюкова). Ранее повторял её, работой был доволен. В формирователе использована К155ЛА8 (уверенно работает на частотах до 15-20 мГц). При использовании в частотомере микросхем 1533 серии (счётчики, входной формирователь) рабочая частота частотомера составляет 30-40 мГц.


Рисунок 3.
Входной формирователь и ЗГ измерительных интервалов.

Задающий генератор, формирователь измерительных интервалов.

Задающий генератор собран на часовой МС серии К176, изображён на рисунке №3 вместе с входным формирователем.
Включение МС К176ИЕ12 типовое, каких-либо отличий нет. Формируются частоты 32,768 кГц, 128 Гц, 1,024 кГц, 1 Гц. Используется в ЧС только 1 Гц. Для формирования управляющего сигнала для ВУ эта частота делится на 2 (0,5 Гц) МС К561ТМ2 (CD4013A) (используется один D-триггер).


Рисунок 4.
Сигналы интервалов.

Формирователь сигналов сброса счетчиков КР1533ИЕ2 и записи в регистры хранения К555ИР16

Собран на МС К555(155)АГ3 (два ждущих мультивибратора в одном корпусе), можно использовать и две МС К155АГ1 (смотри рис.№3).
По спаду управляющего сигнала МС АГ3 первый ж/м формирует импульс Rom - записи в регистры хранения. По спаду импульса Rom формируется вторым ж/м импульс сброса триггеров счетчиков КР1533ИЕ2 Reset.


Рисунок 5.
Сигнал сброса.

Для при измерении частоты собран блок на 2-х К555ИР16 и 4-х К555(155)ЛЕ1 (схемку нашел на просторах интернета, только немного подкорректировал под себя и имеющуюся элементарную базу).
Можно упростить частотомер и не собирать схему гашения незначащих нулей (на рисунке №9 изображена схема частотомера без схемы гашения незначащих нулей), в этом случае просто будут светиться все индикаторы, смотрите сами, как Вам лучше.
Я её собрал потому, что мне просто так приятнее смотреть на табло частотомера.


Рисунок 6. Схема гашения незначащих нулей.

Включение счетчиков КР1533ИЕ2, регистров К555ИР16, дешифраторов КР514ИД2 типовое, согласно документации.


Рисунок 7.
Схема включения счётчиков и дешифраторов.

Весь ЧС собран на 5-х платах:
1, 2 - счетчики, регистры и дешифраторы (на каждой плате по 4-е декады);
3 - блок гашения незначащих нулей;
4 - задающий генератор, формирователь измерительных интервалов, формирователь сигналов Rom и Reset;
5 - блок питания.

Размеры плат: 1 и 2 - 70х105, 3 и 4 - 43х100; 5 - 50х110.


Рисунок 8.
Подключение схемы гашения незначащих нулей в частотомере.

Блок питания. Собран на двух МС 7805. Включения типовое, как рекомендует завод-изготовитель. Для принятия решения по блоку питания были проведены замеры тока потребления ЧС, так же проверялось возможность применения ИБП и БП с ШИМ стабилизацией. Проверялись: ИБП собранный на TNY266PN (5В, 2А), БП с ШИМ на основе LM2576T-ADJ (5В, 1,5А). Общее замечания - ЧС работает не корректно, т.к. по цепи питания проходят импульсы с частотой работы драйверов (для TNY266PN около 130 кГц, для LM2576T-ADJ - 50 кГц). Применение фильтров большого изменения не выявили. Так, что остановился на обыкновенном БП - транс, диодный мост, электролиты и две МС 7805. Ток потребления всего ЧС (на индикаторах все «8») около 0,8А, когда индикаторы погашены - 0,4А.


Рисунок 9.
Схема частотомера без схемы гашения незначащих нулей.

В блоке питания использовал две МС 7805 для питания ЧС. Одна МС стабилизатора питает плату входного формирователя, блока управления дешифраторами (гашение незначащих нулей) и одной платы счетчиков-дешифраторов. Вторая МС 7805 - питает другую плату счетчиков-дешифраторов и индикаторы. Можно бп собрать и на одной 7805, но греться будет прилично, встанет проблема с отведением тепла. В ЧС можно применять МС серий 155, 555, 1533. Все зависит от возможностей….




Рисунок 10, 11, 12, 13.
Конструкция частотомера.

Возможная замена: К176ИЕ12 (MM5368) на К176ИЕ18, К176ИЕ5 (CD4033E); КР1533ИЕ2 на К155ИЕ2 (SN7490AN, SN7490AJ), К555ИЕ2 (SN74LS90); К555ИР16 (74LS295N) можно заменить на К155ИР1 (SN7495N, SN7495J) (отличаются одним выводом), или применить для хранения информации К555(155)ТМ5(7) (SN74LS77, SN74LS75); КР514ИД2 (MSD101) дешифратор для индикаторов с ОА, можно применить и КР514ИД1 (MSD047) дешифратор для индикаторов с ОК; К155ЛА8 (SN7403PC) 4 элемента 2И-НЕ с открытым коллектором - на К555ЛА8; К555АГ3 (SN74LS123) на К155АГ3 (SN74123N, SN74123J), или две К155АГ1 (SN74121); К561ТМ2 (CD4013A) на К176ТМ2 (CD4013E). К555ЛЕ1 (SN74LS02).

P.S. Можно использовать различные индикаторы с ОА, только ток потребления на один сегмент не должен превышать нагрузочной способности дешифратора по выходу.. Ограничительные резисторы зависят от типа применяемого индикатора (в моем случае 270 ом).

Ниже в архиве есть все необходимые файлы и материалы для сборки частотомера.

Удачи всем и всего наилучшего!

Понравилась статья? Поделитесь ей