Контакты

Импульсный блок питания на отечественных деталях схема. Простые импульсные блоки питания. Принципиальные схемы импульсных блоков питания

Cамодельный импульсный источника питания своими руками.

Автор конструкции (Сергей Кузнецов его сайт — classd.fromru.com) разрабатывал этот самодельный сетевой источник питания
для запитки мощного УМЗЧ (Усилителя Мощности Звуковой Частоты). Преимущества импульсных сетевых источников питания перед обычными трансформаторными источника питания очевидны:

  • Вес получаемого изделия гораздо ниже
  • Габариты импульсного источника питания гораздо меньше.
  • КПД изделия, и соответственно тепловыделение ниже
  • Диапазон питающих напряжений (скачков напряжения в сети) при которых блок питания может стабильно работать значительно шире.

Однако, изготовление импульсного сетевого источника питания требует гораздо больше усилий и познаний, по сравнению с изготовлением обычного низкочастотного 50 Герцового блока питания. Низкочастотный блок питания состоит из сетевого трансформатора, диодного моста и сглаживающих конденсаторов фильтра, импульсный же имеет гораздо более сложную структуру.

Основной минус импульсных сетевых блоков питания — наличие высокочастотных помех, с которыми придется побороться, в случае неправильной трассировки печатной платы, либо при неправильном выборе компонентной базы. При включении ИБП, как правило, в розетке наблюдается сильная искра. Это обуславливается большим пиковым током запуска блока питания, в виду заряда конденсаторов входного фильтра. Для исключения таких всплесков тока, разработчики проектируют различные системы «мягкого старта» которые в первой фазе работы заряжают малым током конденсаторы фильтра, а при окончании заряда организуют подачу уже полного напряжения сети на ИБП. В данном случае применен упрощенный вариант такой системы, представляющий собой последовательно соединенный резистор и термистор, ограничивающие ток заряда конденсаторов.

В основе схемы лежит шим-контроллер IR2153 в стандартной схеме включения. Полевые транзисторы IRFI840GLC можно заменить на IRFIBC30G, другие транзисторы автор ставить не рекомендует, так как это повлечет необходимость уменьшения номиналов R2, R3 и соответственно к росту выделяемого тепла. Напряжение на шим-контроллере должно быть не ниже 10 Вольт. Желательна работа микросхемы от напряжения 11-14 Вольт. Компоненты L1 C13 R8 улучшают режим функционирования транзисторов.

Дроссели, стоящие по выходу источника питания 10мкг намотаны проводом 1мм на ферритовых гантелях с магнитной проницаемостью 600НН. Можно мотать на стержнях от старых приёмников, хватит витков 10-15. Конденсаторы в источнике питания необходимо применять низкоимпендансные, с целью снижения ВЧ шумов.


Трансформатор был рассчитан при помощи программы Transformer 2. Индукцию нужно выбирать как можно меньше, лучше не более 0.25. Частоту в районе 40-80к. Автор не рекомендует применение колец отечественного производства, в виду не идентичности параметров феррита и значительных потерь в трансформаторе. Печатная плата проектировалась под трансформатор типоразмера 30х19х20. При наладке источника питания запрещено соединять землю осциллографа в точку соединения транзисторов. Первый запуск блока питания желательно произвести при последовательно подключенной с источником лампе на 220в мощностью 25-40W, при этом нельзя сильно нагружать ИБП. Печатную плату блока в формате LAY можно скачать или

Сделал еще и инвертор, чтобы можно было питать от 12 В, то есть автомобильный вариант. После того как все сделал в плане УНЧ, был поставлен вопрос: чем теперь его питать? Даже для тех же тестов, или чтобы просто послушать? Думал обойдется все АТХ БП, но при попытке «навалить», БП надежно уходит в защиту, а переделывать как-то не очень хочется... И тут осенила мысль сделать свой, без всяких «прибамбасов» БП (кроме защиты разумеется). Начал с поиска схем, присматривался к относительно не сложным для меня схем. В итоге остановился на этой:

Нагрузку держит отлично, но замена некоторых деталей на более мощные позволит выжать из неё 400 Вт и более. Микросхема IR2153 - самотактируемый драйвер, который разрабатывался специально для работы в балластах энергосберегающих ламп. Она имеет очень малое потребление тока и может питаться через ограничительный резистор.

Сборка устройства

Начнем с травления платы (травление, зачистка, сверление). Архив с ПП .

Сначала прикупил некоторые отсутствующие детали (транзисторы, ирка, и мощные резисторы).

Кстати, сетевой фильтр полностью снял с БП от проигрывателя дисков:

Теперь самое интересное в ИИП - трансформатор, хотя ничего сложного тут нету, просто надо понять, как его правильно мотать, и всего то. Для начала нужно знать, чего и сколько наматывать, для этого есть множество программ, однако самая распространённая и пользующаяся популярностью у радиолюбителей это - ExcellentIT . В ней мы и будем рассчитывать наш трансформатор.

Как видим, получилось у нас 49 витков первичная обмотка, и две обмотки по 6 витков (вторичная). Будем мотать!

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

  1. Если мощность всего около 200 Вт, то резистор, задающий порог защиты R10, должен быть 0,33 Ом 5 Вт. Если он будет в обрыве, или сгорит, сгорят все транзисторы, а также микросхема.
  2. Сетевой конденсатор выбирается из расчета: 1-1,5 мкФ на 1 Вт мощности блока.
  3. В данной схеме частота преобразования примерно 63 кГц, и в ходе эксплуатации, наверное, лучше для кольца марки 2000НМ, частоту уменьшить до 40-50 кГц, так как предельная частота, на которой кольцо работает без нагрева - 70-75 кГц. Не стоит гнаться за большой частотой, для данной схемы, и кольца марки 2000НМ, будет оптимально 40-50 кГц. Слишком большая частота приведет к коммутационным потерям на транзисторах и значительных потерях на трансформаторе, что вызовет его значительный нагрев.
  4. Если у вас на холостом ходу при правильной сборке греется трансформатор и ключи, попробуйте снизить емкость конденсатора снаббера С10 с 1 нФ до 100-220 пкФ. Ключи нужно изолировать от радиатора. Вместо R1 можно использовать термистор с БП АТХ.

Вот конечные фото проекта блока питания:

Обсудить статью МОЩНЫЙ ИМПУЛЬСНЫЙ СЕТЕВОЙ ДВУХПОЛЯРНЫЙ БЛОК ПИТАНИЯ

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Импульсный блок питания - это инверторная система, в которой переменное напряжение преобразовывается в постоянное, а затем из него формируются импульсы повышенной частоты. Такой прибор стоит довольно дорого и купить его могут только обеспеченные люди. Все те, кто не относится к этой категории, стараются изготовить устройство своими руками. Для этого понадобятся необходимые материалы и схема импульсного блока питания 12 В 5А.

Общие сведения

Перед тем как сделать импульсный блок питания своими руками, необходимо подробно изучить его конструктивные особенности, принцип действия, достоинства и недостатки. С помощью этой информации можно ускорить процесс создания, а также сделать устройство более качественным и долговечным.

Составные части

Чаще всего самодельный импульсный блок питания изготавливается по стандартной схеме с использованием некоторых важных элементов. Он применяется для корректировки входного напряжения при питании светодиодных ламп или других осветительных приборов. Конструкция блока включает в себя несколько составляющих:

Принцип работы

Импульсный источник питания отличается простотой своей работы. В ней без труда сможет разобраться не только специалист, но и новичок, имеющий элементарные знания в этой области. Из-за этого устройства считаются наиболее доступными и часто используются для достижения различных целей. Работают они следующим образом:

  1. Переменное входное напряжение преобразовывается в постоянное.
  2. Затем оно принимает вид прямоугольного импульса высокой частоты и подаётся на трансформатор.
  3. Там при помощи отрицательной обратной связи происходит процесс стабилизации напряжения.

Обратная связь может быть создана одним из двух способов. Оба они позволяют качественно выполнить возложенные функции и избежать появления непредвиденных ситуаций. Способы организации обратной связи:

  1. Без создания развязки (применяется резисторный делитель напряжения).
  2. С гальванической развязкой (выход обмотки трансформатора или оптрон).

Аналогично происходит процесс выдерживания выходного напряжения.

Преимущества и недостатки

Созданный своими руками импульсный БП, как и любое другое устройство, имеет несколько достоинств. Благодаря им конструкция пользуется большой популярностью и часто применяется в той или иной сфере деятельности человека. К положительным сторонам источника питания относятся следующие факторы:

Несмотря на большое количество преимуществ, у конструкции есть и несколько недостатков. Их обязательно нужно учитывать, так как они позволят избежать неисправностей и снизят риск некачественной работы устройства. Среди недостатков выделяются такие:

  1. Наличие трудностей при самостоятельной регулировке параметров прибора.
  2. Сильные импульсные помехи.
  3. Необходимость дополнения цепи компенсаторами коэффициента мощности.
  4. Сложность проведения ремонтных и профилактических работ.
  5. Низкая степень надёжности.

Изготовление своими руками

Для того чтобы устройство правильно работало и выполняло возложенные на него функции, необходимо соблюсти ряд правил. С их помощью можно добиться нужного результата и снизить вероятность возникновения ошибок.

Во время изготовления импульсного источника питания следует брать во внимание не только советы производителей деталей, но и рекомендации специалистов. Они помогут новичкам избежать большинства простых ошибок и выполнить работу за максимально короткий промежуток времени. Советы профессионалов:

  1. В большинстве случаев схема блока питания не требует наличия специальных фильтров и организации обратной связи.
  2. Из множества полевых транзисторов рекомендуется покупать детали типа IR. Они хорошо выдерживают повышенные температуры и не разрушаются под длительным воздействием тепла.
  3. Если в собранной своими руками конструкции транзисторы будут сильно нагреваться в процессе работы, то следует установить дополнительное охлаждающее устройство (вентилятор).

Необходимые материалы и инструменты

Перед тем как приступить к изготовлению устройства, нужно подготовить все необходимые материалы и инструменты. Благодаря этому можно будет не отвлекаться во время работы, чтобы найти тот или иной предмет. В процессе создания прибора понадобятся:

Помимо составляющих частей конструкции необходимо подготовить различные инструменты. С их помощью будет выполняться сборка устройства, поэтому они должны быть качественными и удобными для использования.

Необходимые инструменты:

  • плоскогубцы;
  • отвёртки разного размера;
  • пинцет;
  • паяльное оборудование;
  • расходные материалы для пайки.

Процесс сборки

После того как все подготовительные мероприятия были завершены, можно приступать к сборке устройства своими руками. Схема импульсных источников питания составляется заранее. Эту работу можно выполнять самостоятельно или с помощью специалиста.

Первый вариант значительно дешевле, но требует от мастера наличия знаний в области электроники и больших временных затрат.

Пошаговая инструкция:

Тестирование устройства

Для того чтобы проверить собранный импульсный источник энергии на работоспособность, необходимо выполнить несколько простых действий. Они помогут выявить различные проблемы и ошибки, допущенные в процессе сборки. Порядок действий:

  1. Выполняется первое кратковременное включение устройства в цепь.
  2. Если всё правильно сделано, то должна загореться лампочка, сигнализирующая о подаче питания к прибору.
  3. Затем следует оставить блок питания в рабочем состоянии на несколько минут.
  4. По истечении этого времени необходимо отключить устройство и проверить температуру всех его деталей. Нагрев одного или нескольких элементов будет свидетельствовать о допущенной ошибке в процессе сборки.
  5. При втором пуске определяется величина напряжения. Выполнить эту операцию можно при помощи специального тестера.
  6. Работающий блок питания оставляется примерно на 1 час.
  7. По прошествии указанного промежутка времени элементы проверяются на степень нагрева.
  8. Если ни один из элементов не стал горячим, то все они проверяются на наличие высокого тока после отключения питания.

Техника безопасности

Во время эксплуатации импульсного блока необходимо придерживаться простых правил безопасности. Они помогут избежать травм разной степени тяжести и снизить вероятность возникновения аварийной ситуации. Основные меры предосторожности:

Импульсный источник энергии - это полезное и нужное устройство, которое можно не только купить в готовом виде, но и изготовить своими руками. Второй вариант более популярный, так как он позволяет получить качественный прибор с минимальными финансовыми и временными затратами.

При соблюдении советов профессионалов и правил техники безопасности можно значительно снизить риск получения травмы и избежать аварийных ситуаций.

!
В данной статье мы вместе с Романом (автором YouTube канала «Open Frime TV») соберем универсальный блок питания на микросхеме IR2153. Это некий «франкенштейн», который содержит в себе лучшие качества из разных схем.

В интернете полно схем блоков питания на микросхеме IR2153. Каждая из них имеет некие положительные особенности, но вот универсальной схемы автор еще не встречал. Поэтому было принято решение создать такую схему и показать ее вам. Думаю, можно сразу к ней перейти. Итак, давайте разбираться.


Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом мы убиваем двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги. Автор специально сделал несколько отверстий в плате под разные размеры конденсаторов.








Если же блока нету в наличии, то цены на пару таких конденсаторов ниже чем на один высоковольтный. Емкость конденсаторов одинакова и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.




Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что экономит нам место. И это еще не все. Напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.




Следующая особенность схемы, это запитка для IR2153. Все кто строил блоки на ней сталкивались нереальным нагревом питающих резисторов.




Даже если их ставить от переменки, количество тепла выделяется очень много. Тут же применено гениальное решение, использование вместо резистора конденсатор, а это нам дает то, что нагрев элемента по питанию отсутствует.


Такое решение автор данной самоделки увидел у Юрия, автора YouTube канала "Red Shade". Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.






Но после тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое автор установил защиту. Если она не нужна, то можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.




Ток защиты регулируется с помощью вот этого подстроечного резистора:


Номиналы резисторов шунта изменяетюся в зависимости от максимальной выходной мощности. Чем больше мощность, тем меньше нужно сопротивление. Вот к примеру, для мощности ниже 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то нужны резисторы на 0,2 Ом, ну и при 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом.


Данный блок не стоит собирать мощностью выше 600 Вт, а также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц, это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.




Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.


Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.


Если же нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.




Также необходимо отметить и такие вспомогательные элементы как снабберы (Snubber) в обвязке трансформатора;


сглаживающие конденсаторы;


а также Y-конденсатор между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.


Про данные конденсаторы есть отличный ролик на Ютубе (ссылку автор прикрепил в описании под своим видеороликом (ссылка ИСТОЧНИК в конце статьи)).


Нельзя пропускать и частотозадающую часть схемы.


Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая - это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.




Сейчас вы можете видеть 2-е макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.


Макетки автор делал для того, чтобы со спокойной душой заказать изготовление данной платы в Китае. В описании под оригинальным видеороликом автора, вы найдете архив с данной платой, схемой и печаткой. Там будет в двух платках и первый, и второй варианты, так что можете скачивать и повторять данный проект.

После заказа автор с нетерпением ждал платы, и вот они уже приехали. Раскрываем посылку, платы достаточно хорошо упакованы - не придерешься. Визуально осматриваем их, вроде все отлично, и сразу же приступаем к запайке платы.








И вот она уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне. Автор применил вот такие круглые, потому что их размеры весьма скромные.




Далее видим конденсаторы фильтра.


Их можно достать из старого блока питания компьютера. Дроссель автор мотал на кольце т-9052, 10 витков проводом 0,8 мм 2 жилы, но можно применить дроссель из того же компьютерного блока питания.
Диодный мост – любой, с током не меньше 10 А.


Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой по низкой.
Понравилась статья? Поделитесь ей