Контакты

Солнце: строение, характеристики, интересные факты, фото, видео. Солнце: строение, характеристики, интересные факты, фото, видео Прохождение света звезд через солнечную корону

Затмения относятся к числу самых зрелищных астрономических явлений. Однако никакие технические средства не могут в полной мере передать ощущения, возникающие при этом у наблюдателя. И все же в силу несовершенства человеческого глаза ему видно далеко не все сразу. Ускользающие от взгляда детали этой чудесной картины способна выявить и запечатлеть только специальная техника фотографирования и обработки сигналов. Многообразие затмений далеко не исчерпывается явлениями в системе Солнце-Земля-Луна. Относительно близко расположенные космические тела регулярно отбрасывают друг на друга тени (нужно лишь, чтобы неподалеку был какой-нибудь мощный источник светового излучения). Наблюдая за этим космическим театром теней, астрономы получают множество интересных сведений об устройстве Вселенной. Фото Вячеслав Хондырев

На болгарском курорте Шабла 11 августа 1999 года был самый обычный летний день. Голубое небо, золотой песок, теплое ласковое море. Но на пляже никто не заходил в воду — публика готовилась к наблюдениям. Именно здесь стокилометровое пятно лунной тени должно было пересечь берег Черного моря, а длительность полной фазы, согласно расчетам, достигала 3 минут 20 секунд. Отличная погода вполне соответствовала многолетним данным, но все с тревогой поглядывали на облако, висящее над горами.

На самом деле затмение уже шло, просто его частные фазы мало кого интересовали. Иное дело — полная фаза, до начала которой оставалось еще полчаса. Новенькая цифровая зеркалка, специально купленная для этого случая, стояла в полной готовности. Все продумано до мелочей, каждое движение отрепетировано десятки раз. Погода испортиться уже не успеет, и все же беспокойство почему-то нарастало. Может, дело в том, что света заметно поубавилось и резко похолодало? Но так и должно быть с приближением полной фазы. Впрочем, птицам этого не понять — все способные летать пернатые поднялись в воздух и с криками выписывали круги над нашими головами. С моря задул ветер. С каждой минутой он крепчал, и тяжелая фотокамера начинала дрожать на штативе, который еще недавно казался таким надежным.

Делать нечего — за несколько минут до расчетного момента, рискуя все испортить, я спустился с песчаного холма к его подножию, где кусты гасили ветер. Несколько движений, и буквально в последний момент техника вновь настроена. Но что это за шум? Лают и воют собаки, блеют овцы. Кажется, все животные, способные издавать звуки, делают это как в последний раз! Свет меркнет с каждой секундой. Птиц в потемневшем небе уже не видно. Все разом стихает. Нитевидный солнечный серпик освещает морской берег не ярче, чем полная Луна. Вдруг и он гаснет. Кто следил за ним в последние секунды без темного фильтра, в первые мгновения наверняка ничего не видит.

Мое суетливое волнение сменилось настоящим шоком: затмение, о котором я мечтал всю жизнь, уже началось, летят драгоценные секунды, а я даже не могу поднять голову и насладиться редчайшим зрелищем — фотосъемка прежде всего! По каждому нажатию кнопки фотокамера автоматически делает серию из девяти снимков (в режиме «брекетинг»). Еще одну. Еще и еще. Пока камера щелкает затвором, все же отваживаюсь оторваться и взглянуть на корону в бинокль. От черной Луны во все стороны разбрелось множество длинных лучей, образуя жемчужную корону с желтовато-кремовым оттенком, а у самого края диска вспыхивают ярко-розовые протуберанцы. Один из них необычно далеко отлетел от края Луны. Расходясь в стороны, лучи короны постепенно бледнеют и сливаются с темно-синим фоном неба. Эффект присутствия такой, будто не на песке стою, а лечу в небе. А время словно исчезло...

Вдруг по глазам ударил яркий свет — это выплыл из-за Луны краешек Солнца. Как же быстро все кончилось! Протуберанцы и лучи короны видны еще несколько секунд, и съемка продолжается до последнего. Программа выполнена! Несколько минут спустя вновь разгорается день. Птицы сразу позабыли испуг от внеочередной скоротечной ночи. Но моя память вот уже много лет хранит ощущение абсолютной красоты и величия космоса, чувство сопричастности к его тайнам.

Как впервые измерили скорость света

Затмения происходят не только в системе Солнце-Земля-Луна. Например, четыре крупнейших спутника Юпитера, открытых еще Галилео Галилеем в 1610 году, сыграли важную роль в развитии мореплавания. В ту эпоху, когда еще не было точных морских хронометров, по ним можно было вдали от родных берегов узнавать гринвичское время, необходимое для определения долготы судна. Затмения спутников в системе Юпитера происходят почти каждую ночь, когда то один, то другой спутник входит в тень, отбрасываемую Юпитером, или скрывается от нашего взгляда за диском самой планеты. Зная из морского альманаха предварительно вычисленные моменты этих явлений и сравнивая их с местным временем, получаемым из элементарных астрономических наблюдений, можно определить свою долготу. В 1676 году датский астроном Оле Кристенсен Рёмер заметил, что затмения спутников Юпитера немного отклоняются от предвычисленных моментов. Юпитерианские часы то уходили вперед на восемь с небольшим минут, то потом, спустя около полугода, на столько же отставали. Рёмер сопоставил эти колебания с положением Юпитера относительно Земли и пришел к выводу, что все дело в задержке распространения света: когда Земля ближе к Юпитеру, затмения его спутников наблюдаются раньше, когда дальше — позже. Разница, составлявшая 16,6 минуты, соответствовала времени, за которое свет проходил диаметр земной орбиты. Так Рёмер впервые измерил скорость света.

Встречи в небесных узлах

По удивительному совпадению видимые размеры Луны и Солнца почти одинаковы. Благодаря этому в редкие минуты полных солнечных затмений можно увидеть протуберанцы и солнечную корону — самые внешние плазменные структуры солнечной атмосферы, постоянно «улетающие» в открытый космос. Не будь у Земли такого большого спутника, до поры до времени никто бы и не догадался об их существовании.

Видимые пути по небу Солнца и Луны пересекаются в двух точках — узлах, через которые Солнце проходит примерно раз в полгода. Именно в это время и становятся возможны затмения. Когда Луна встречается с Солнцем в одном из узлов, наступает солнечное затмение: вершина конуса лунной тени, упираясь в поверхность Земли, образует овальное теневое пятно, которое с большой скоростью смещается по земной поверхности. Только попавшие в него люди увидят лунный диск, полностью перекрывающий солнечный. Для наблюдателя полосы полной фазы затмение будет частным. Причем вдали его можно даже не заметить — ведь когда закрыто менее 80—90% солнечного диска, уменьшение освещенности почти неощутимо для глаза.

Ширина полосы полной фазы зависит от расстояния до Луны, которое из-за эллиптичности ее орбиты меняется от 363 до 405 тысяч километров. При максимальном расстоянии конус лунной тени немного не дотягивается до поверхности Земли. В этом случае видимые размеры Луны оказываются немного меньше Солнца и вместо полного затмения происходит кольцеобразное: даже в максимальной фазе вокруг Луны остается яркий ободок солнечной фотосферы, мешающий увидеть корону. Астрономов, разумеется, в первую очередь интересуют полные затмения, при которых небо темнеет настолько, что можно наблюдать лучистую корону.

Лунные затмения (с точки зрения гипотетического наблюдателя на Луне они будут, разумеется, солнечными) происходят во время полнолуния, когда наш естественный спутник проходит узел, противоположный тому, где находится Солнце, и попадает в конус тени, отбрасываемой Землей. Внутри тени нет прямых солнечных лучей, но свет, преломившийся в земной атмосфере, все же попадает на поверхность Луны. Обычно он окрашивает ее в красноватый (а иногда буро-зеленоватый) цвет из-за того, что в воздухе длинноволновое (красное) излучение поглощается меньше, чем коротковолновое (синее). Можно представить себе, какой ужас наводил на первобытного человека внезапно помрачившийся зловеще красный диск Луны! Что уж говорить о солнечных затмениях, когда с неба вдруг начинало исчезать дневное светило — главное божество для многих народов?

Неудивительно, что поиск закономерностей в распорядке затмений стал одной из первых сложных астрономических задач. Ассирийские клинописные таблички, относящиеся к 1400—900 годам до н. э., содержат данные о систематических наблюдениях затмений в эпоху вавилонских царей, а также упоминание о замечательном периоде в 65851/3 суток (саросе), в течение которого повторяется последовательность лунных и солнечных затмений. Греки пошли еще дальше — по форме тени, наползающей на Луну, они сделали вывод о шарообразности Земли и о том, что Солнце намного превосходит ее по размерам.

Как определяют массы других звезд

Александр Сергеев

Шесть сотен «исходников»

С удалением от Солнца внешняя корона постепенно тускнеет. Там, где на фотоснимках она сливается с фоном неба, ее яркость в миллион раз меньше яркости протуберанцев и окружающей их внутренней короны. На первый взгляд невозможно сфотографировать корону на всем ее протяжении от края солнечного диска до слияния с фоном неба, ведь хорошо известно, что динамический диапазон фотографических матриц и эмульсий в тысячи раз меньше. Но снимки, которыми иллюстрирована эта статья, доказывают обратное. Задача имеет решение! Только идти к результату нужно не напролом, а в обход: вместо одного «идеального» кадра нужно сделать серию снимков с разной экспозицией. Разные снимки будут выявлять области короны, находящиеся на разных расстояниях от Солнца.

Такие снимки сначала обрабатываются отдельно, а потом совмещаются друг с другом по деталям лучей короны (по Луне снимки совмещать нельзя, ведь она быстро движется относительно Солнца). Цифровая обработка фотоснимков не так проста, как кажется. Однако наш опыт показывает, что свести воедино можно любые снимки одного затмения. Широкоугольные с длиннофокусными, с малой и большой экспозицией, профессиональные и любительские. В этих снимках частицы труда двадцати пяти наблюдателей, фотографировавших затмение 2006 года в Турции , на Кавказе и в Астрахани.

Шесть сотен исходных снимков, претерпев множество преобразований, превратились всего лишь в несколько отдельных изображений, но зато каких! Теперь на них есть все мельчайшие детали короны и протуберанцев, хромосфера Солнца и звезды до девятой величины. Такие звезды даже ночью видны только в хороший бинокль. Лучи короны «проработались» до рекордных 13 радиусов солнечного диска. И еще цвет! Все, что видно на итоговых изображениях, имеет реальную окраску, совпадающую с визуальными ощущениями. И достигнуто это не искусственным подкрашиванием в «Фотошопе», а с помощью строгих математических процедур в программе обработки. Размер каждого снимка приближается к гигабайту — можно сделать отпечатки шириной до полутора метров без всякой потери детализации.

Как уточняют орбиты астероидов

Затменно-переменными звездами называют тесные двойные системы, в которых две звезды обращаются вокруг общего центра масс так, что орбита повернута к нам ребром. Тогда две звезды регулярно затмевают друг друга, а земной наблюдатель видит периодические изменения их суммарного блеска. Самая известная затменно-переменная звезда — Алголь (бета Персея). Период обращения в этой системе составляет 2 суток 20 часов и 49 минут. За это время на кривой блеска наблюдается два минимума. Один глубокий, когда небольшая, но горячая белая звезда Алголь А полностью скрывается позади тусклого красного гиганта Алголя B. В это время совокупная яркость двойной звезды падает почти в 3 раза. Менее заметный спад блеска — на 5—6% — наблюдается, когда Алголь А проходит на фоне Алголя В и немного ослабляет его блеск. Тщательное изучение кривой блеска позволяет узнать много важных сведений о звездной системе: размеры и светимости каждой из двух звезд, степень вытянутости их орбиты, отклонение формы звезд от шарообразной под действием приливных сил и самое главное — массы звезд. Без этих сведений было бы трудно создать и проверить современную теорию строения и эволюции звезд. Звезды могут затмеваться не только звездами, но и планетами. Когда 8 июня 2004 года планета Венера прошла по диску Солнца, мало кому пришло в голову говорить о затмении, поскольку на блеске Солнца крошечное темное пятнышко Венеры почти не сказалось. Но если бы на ее месте оказался газовый гигант типа Юпитера, он заслонил бы примерно 1% площади солнечного диска и на столько же снизил бы его блеск. Это уже можно зарегистрировать современными инструментами, и на сегодня уже есть случаи таких наблюдений. Причем некоторые из них выполнены любителями астрономии. Фактически «экзопланетные» затмения — это единственный доступный любителям способ наблюдать планеты у других звезд.

Александр Сергеев

Панорама в лунной тени

Необыкновенная красота солнечного затмения не исчерпывается сверкающей короной. Ведь есть еще заревое кольцо по всему горизонту, которое создает в момент полной фазы уникальное освещение, как будто закат происходит сразу со всех сторон света. Вот только мало кому удается оторвать взгляд от короны и посмотреть на удивительные цвета моря и гор. И тут на помощь приходит панорамная фотосъемка. Несколько соединенных вместе снимков покажут все, что ускользнуло от взгляда или не врезалось в память.

Приведенный в этой статье панорамный снимок — особенный. Его охват по горизонту — 340 градусов (почти полный круг), а по вертикали — почти до зенита. Только на нем мы позже рассмотрели перистые облака, которые едва не испортили нам наблюдения — они же всегда к перемене погоды. И действительно, дождь начался уже через час после того, как Луна сошла с диска Солнца. Видимые на снимке инверсионные следы двух самолетов на самом деле не обрываются в небе, а просто уходят в лунную тень и из-за этого становятся невидимыми. Справа на панораме затмение в самом разгаре, а на левом краю снимка полная фаза только что закончилась.

Правее и ниже короны расположен Меркурий — он никогда не уходит далеко от Солнца, и увидеть его удается далеко не всем. Еще ниже сверкает Венера , а по другую сторону от Солнца — Марс . Все планеты расположены вдоль одной линии — эклиптики — проекции на небо плоскости, вблизи которой обращаются все планеты. Только во время затмения (и еще из космоса) можно вот так с ребра увидеть нашу планетную систему, окружающую Солнце. В центральной части панорамы видны созвездия Ориона и Возничего. Яркие звезды Капелла и Ригель белые, а красный сверхгигант Бетельгейзе и Марс получились оранжевыми (цвет виден при увеличении). Сотням людей, наблюдавшим затмение в марте 2006-го, теперь кажется, что все это они видели своими глазами. А ведь им панорамный снимок помог — он уже выставлен в Интернете.

Как нужно фотографировать?

29 марта 2006 года в поселке Кемер на средиземноморском побережье Турции в ожидании начала полного затмения опытные наблюдатели делились секретами с начинающими. Самое главное на затмении — не забыть открыть объективы. Это не шутка, такое действительно случается. А еще не стоит дублировать друг друга, делая одинаковые кадры. Пусть каждый снимает то, что именно с его аппаратурой может получиться лучше, чем у других. Для наблюдателей, вооруженных камерами с широкоугольной оптикой, главная цель — внешняя корона. Надо постараться сделать серию ее снимков с разной выдержкой. Владельцы телеобъективов могут получить детальные изображения средней короны. А если у вас есть телескоп, то надо фотографировать область у самого края лунного диска и не тратить драгоценные секунды на работу с другой аппаратурой. И призыв тогда был услышан. А сразу после затмения наблюдатели стали свободно обмениваться файлами со снимками, чтобы собрать комплект для дальнейшей обработки. Позже это привело к созданию банка оригинальных снимков затмения 2006 года. Каждый теперь понимал, что от исходных снимков до детального изображения всей короны еще очень-очень далеко. Времена, когда любой резкий снимок затмения считался шедевром и окончательным результатом наблюдений, безвозвратно прошли. По возвращении домой всех ждала работа за компьютером.

Активное Солнце

Солнце, как и другие похожие на него звезды, отличается периодически наступающими состояниями активности, когда в его атмосфере в результате сложных взаимодействий движущейся плазмы с магнитными полями возникает множество неустойчивых структур. В первую очередь это солнечные пятна, где часть тепловой энергии плазмы переходит в энергию магнитного поля и в кинетическую энергию движения отдельных плазменных потоков. Солнечные пятна холоднее окружающей среды и выглядят темными на фоне более яркой фотосферы — слоя солнечной атмосферы, из которого к нам приходит большая часть видимого света. Вокруг пятен и во всей активной области атмосфера, дополнительно нагреваемая энергией затухающих магнитных полей, становится ярче, и возникают структуры, называемые факелами (видимые в белом свете) и флоккулами (наблюдаемые в монохроматическом свете от дельных спектральных линий, например, водорода).

Над фотосферой располагаются более разреженные слои солнечной атмосферы толщиной 10—20 тысяч километров, называемые хромосферой, а над ней на многие миллионы километров простирается корона. Над группами солнечных пятен, а иногда и в стороне от них часто возникают протяженные облака — протуберанцы, хорошо заметные во время полной фазы затмения на краю солнечного диска в виде ярких розовых дуг и выбросов. Корона — самая разреженная и очень горячая часть атмосферы Солнца, которая как бы испаряется в окружающее пространство, образуя непрерывный поток удаляющейся от Солнца плазмы, называемый солнечным ветром. Именно он придает солнечной короне лучистый вид, оправдывающий ее название.

По движению вещества в хвостах комет выяснилось, что скорость солнечного ветра постепенно увеличивается с удалением от Солнца. Удалившись от светила на одну астрономическую единицу (величина радиуса земной орбиты), солнечный ветер «летит» со скоростью 300—400 км/с при концентрации частиц 1—10 протонов на кубический сантиметр. Встречая на своем пути препятствия в виде планетных магнитосфер, поток солнечного ветра образует ударные волны, которые влияют на атмосферы планет и межпланетную среду. Наблюдая солнечную корону, мы получаем информацию о состоянии космической погоды в окружающем нас космическом пространстве.

Самыми мощными проявлениями солнечной активности являются плазменные взрывы, называемые солнечными вспышками. Они сопровождаются сильным ионизующим излучением, а также мощными выбросами горячей плазмы. Проходя через корону, потоки плазмы заметно влияют на ее структуру. Например, в ней образуются шлемовидные образования, переходящие в длинные лучи. По сути, это вытянутые трубки магнитных полей, вдоль которых с большими скоростями распространяются потоки заряженных частиц (в основном это энергичные протоны и электроны). Фактически видимая структура солнечной короны отражает интенсивность, состав, структуру, направление движения и другие характеристики солнечного ветра, постоянно воздействующего на нашу Землю. В моменты вспышек его скорость может достигать 600—700, а иногда и более 1000 км/с.

В прошлом корона наблюдалась только во время полных солнечных затмений и исключительно вблизи Солнца. В совокупности накопилось около часа наблюдений. С изобретением внезатменного коронографа (специального телескопа, в котором устраивается искусственное затмение) стало возможным постоянно следить с Земли за внутренними областями короны. Также всегда можно регистрировать радиоизлучение короны, причем даже сквозь облака и на больших расстояниях от Солнца. Но в оптическом диапазоне внешние области короны по-прежнему видны с Земли только в полной фазе солнечного затмения.

С развитием внеатмосферных методов исследований появилась возможность непосредственно получать изображение всей короны в ультрафиолетовых и рентгеновских лучах. Наиболее впечатляющие снимки регулярно поступают с космической Солнечной орбитальной гелиосферной обсерватории SOHO, запущенной в конце 1995 года совместными усилиями Европейского космического агентства и NASA. На снимках SOHO лучи короны очень длинные, да и звезд видно много. Однако в середине, в области внутренней и средней короны, изображение отсутствует. Искусственная «луна» в коронографе великовата и заслоняет гораздо больше, чем настоящая. Но иначе нельзя — слишком уж ярко светит Солнце. Так что съемка со спутника не заменяет наблюдений с Земли. Зато космические и земные снимки солнечной короны идеально дополняют друг друга.

SOHO также постоянно наблюдает за поверхностью Солнца, причем затмения ей не помеха, ведь обсерватория находится вне пределов системы Земля-Луна. Несколько ультрафиолетовых изображений, сделанных SOHO в моменты около полной фазы затмения 2006 года, были собраны воедино и помещены на место изображения Луны. Теперь видно, какие активные области в атмосфере ближайшей к нам звезды связаны с теми или иными особенностями в ее короне. Может показаться, что некоторые «купола» и зоны турбулентности в короне ничем не вызваны, но в действительности их источники просто скрыты от наблюдения на другой стороне светила.

«Русское» затмение

Очередное полное солнечное затмение в мире уже называют «русским», поскольку главным образом оно будет наблюдаться в нашей стране. Во второй половине дня 1 августа 2008 года полоса полной фазы протянется от Северного Ледовитого океана почти по меридиану до Алтая, пройдя точно через Нижневартовск, Новосибирск, Барнаул, Бийск и Горно-Алтайск — прямо вдоль федеральной трассы M52. Кстати, в Горно-Алтайске это будет уже второе затмение за два с небольшим года — именно в этом городе пересекаются полосы затмений 2006 и 2008 годов. Во время затмения высота Солнца над горизонтом составит 30 градусов: этого достаточно для фотографирования короны и идеально для панорамной съемки. Погода в Сибири в это время обычно хорошая. Еще не поздно приготовить пару фотоаппаратов и купить билет на самолет.

Это затмение никак нельзя пропустить. Следующее полное затмение будет видно в Китае в 2009 году, а потом хорошие условия для наблюдений сложатся только в США в 2017 и 2024 годах. В России же перерыв продлится почти полвека — до 20 апреля 2061-го.

Если соберетесь, то вот вам хороший совет: наблюдайте группами и обменивайтесь полученными снимками, присылайте их для совместной обработки в Цветочную обсерваторию: www.skygarden.ru . Тогда кому-то обязательно повезет с обработкой, и тогда все, даже оставшиеся дома, благодаря вам увидят затмение Солнца — увенчанную короной звезду.

Уже в эту субботу, 11 августа 2018 года, в космос отправится новая миссия по изучению Солнца - Parker Solar Probe (или солнечный зонд «Паркер»). Через несколько лет аппарат подойдет к Солнцу так близко, как это еще не удавалось ни одному рукотворному объекту. Редакция N + 1 с помощью Сергея Богачева, главного научного сотрудника лаборатории рентгеновской астрономии Солнца ФИАН, решила разобраться, зачем ученые посылают аппарат в столь жаркое место и каких результатов от него ждут.

Когда мы смотрим на ночное небо, то видим огромное количество звезд - самую многочисленную категорию объектов во Вселенной, доступных для наблюдений с Земли. Именно эти огромные сияющие газовые шары производят в своих термоядерных «топках» многие химические элементы тяжелее водорода и гелия, без которых не существовала бы и наша планета, и все живое на ней, и мы сами.

Звезды находятся на огромных дистанциях от Земли - расстояние до ближайшей из них, Проксимы Центавра , оценивается в несколько световых лет. Но есть одна звезда, чей свет идет до нас всего восемь минут, - это наше Солнце, и наблюдения за ним помогают нам больше узнать о других звездах Вселенной.

Солнце гораздо ближе к нам, чем это кажется на первый взгляд. В определенном смысле, Земля находится внутри Солнца - ее постоянно омывает поток солнечного ветра , исходящего из короны - внешней части атмосферы звезды. Именно потоки частиц и излучения от Солнца управляют «космической погодой» вблизи планет. От этих потоков зависит появление полярных сияний и возмущения в магнитосферах планет, а вспышки на Солнце и корональные выбросы массы выводят из строя спутники, влияют на эволюцию жизненных форм на Земле и определяют радиационную нагрузку на пилотируемые космические миссии. Причем подобные процессы происходят не только в Солнечной системе, но и в других планетных системах. Поэтому понимание процессов в короне Солнца и внутренней гелиосфере позволяет нам лучше ориентироваться в особенностях поведения плазменного «океана», окружающего Землю.

Строение Солнца

Wikimedia Commons

«Из-за удаленности Солнца практически всю информацию о нем мы получаем через генерируемое им излучение. Даже какие-то простые параметры, такие как температура, которые на Земле могут измеряться обычным градусником, для Солнца и звезд определяются существенно более сложным способом - по спектру их излучения. Это относится и к более сложным характеристикам, например к магнитному полю. Магнитное поле способно влиять на спектр излучения, расщепляя линии в нем, - это так называемый эффект Зеемана . И именно благодаря тому, что поле меняет спектр излучения звезды, мы способны его зарегистрировать. Если бы такого влияния не было в природе, то мы бы ничего не знали о магнитном поле звезд, так как способа прямо подлететь к звезде нет», - говорит Сергей Богачев.

«Но у этого способа есть и ограничения - взять хотя бы то, что отсутствие излучения лишает нас информации. Если говорить про Солнце, то солнечный ветер не излучает свет, поэтому никакого способа удаленно определять его температуру, плотность и иные свойства нет. Не излучает свет и магнитное поле. Да, в нижних слоях солнечной атмосферы магнитные трубки заполнены светящейся плазмой и это дает возможность измерять магнитное поле вблизи поверхности Солнца. Однако уже на удалении одного радиуса Солнца от его поверхности такие измерения невозможны. И таких примеров можно привести довольно много. Как же быть в такой ситуации? Ответ очень простой: надо запускать зонды, которые могут подлететь прямо к Солнцу, погрузиться в его атмосферу и в солнечный ветер и проводить измерения непосредственно на месте. Такие проекты широко распространены, хотя менее известны, чем проекты космических телескопов, производящих удаленные наблюдения и поставляющих намного более эффектные данные (например, фотографии), чем зонды, с которых идут скучные потоки цифр и графиков. Но если говорить про науку, то, конечно, мало какое удаленное наблюдение может сравниться по силе и убедительности с исследованием объекта, который находится вблизи», - продолжает Богачев.

Загадки Солнца

Наблюдения за Солнцем велись еще в Древней Греции и в Древнем Египте, а на протяжении последних 70 лет не один десяток космических спутников, межпланетных станций и телескопов, начиная от «Спутника-2» и заканчивая работающими сегодня космическими обсерваториями, такими как SDO , SOHO или STEREO , пристально следили (и следят) за поведением самой близкой к нам звезды и ее окрестностями. Тем не менее, у астрономов по-прежнему остается немало вопросов, связанных со строением Солнца и его динамикой.

Например, уже более 30 лет перед учеными стоит проблема солнечных нейтрино , заключающаяся в недостатке зарегистрированных электронных нейтрино, образующихся в ядре Солнца в результате ядерных реакций, по сравнению с их теоретически предсказанным количеством. Другая загадка связана с аномальным нагревом короны . Этот самый внешний слой атмосферы звезды имеет температуру более миллиона градусов Кельвина, в то время как видимая поверхность Солнца (фотосфера), над которой располагаются хромосфера и корона, нагрета всего до шести тысяч градусов Кельвина. Это кажется странным, ведь по логике более внешние слои звезды должны быть более холодными. Прямого теплопереноса между фотосферой и короной недостаточно для обеспечения подобных температур, что означает, что здесь работают иные механизмы подогрева короны.


Корона Солнца во время полного солнечного затмения в августе 2017 года.

NASA’s Goddard Space Flight Center/Gopalswamy

Существуют две основные теории, объясняющие эту аномалию. Согласно первой, за перенос тепла из конвективной зоны и фотосферы Солнца в хромосферу и корону ответственны магнитоакустические волны и Альвеновские волны , которые, рассеиваясь в короне, увеличивают температуру плазмы. Однако эта версия имеет ряд недостатков, например магнитоакустические волны не могут обеспечить перенос достаточно большого объема энергии в корону из-за рассеяния и отражения обратно в фотосферу, а волны Альвена относительно медленно преобразуют свою энергию в тепловую энергию плазмы. Кроме того, долгое время каких-либо прямых свидетельств распространения волн через солнечную корону просто не существовало - лишь в 1997 году космическая обсерватория SOHO впервые зарегистрировала магнитоакустические солнечные волны на частоте в один миллигерц, которые дают лишь десять процентов энергии, необходимой для нагрева короны до наблюдаемых температур.


Вторая теория связывает аномальный нагрев короны с постоянно происходящими микровспышками, возникающими из-за непрерывного пересоединения магнитных линий в локальных областях магнитного поля в фотосфере. Эта идея была предложена в 1980-х годах американским астрономом Юджином Паркером , чьим именем зонд и который также предсказал наличие солнечного ветра - потока высокоэнергетичных заряженных частиц, непрерывно испускаемых Солнцем. Однако теория микровспышек также до сих пор не получила подтверждения. Возможно, на Солнце работают оба механизма, однако это необходимо доказать, а для этого надо подлететь к Солнцу на достаточно близкое расстояние.

С короной связана еще одна тайна Солнца - механизм образования солнечного ветра, заполняющего всю Солнечную систему. Именно от него зависят такие явления космической погоды, как северные сияния или магнитные бури. Астрономов интересуют механизмы возникновения и ускорения медленного солнечного ветра , рождающегося в короне, а также роль магнитных полей в этих процессах. Здесь также существует несколько теорий, имеющие как доказательства, так и недостатки, и ожидается, что зонд «Паркер» поможет расставить точки над i.

«В целом, в настоящее время существуют достаточно проработанные модели солнечного ветра, которые предсказывают, как должны меняться его характеристики по мере удаления от Солнца. Точность этих моделей достаточно высока на расстояниях порядка земной орбиты, но насколько точно они описывают солнечный ветер на близких расстояниях от Солнца, не понятно. Вероятно, „Паркер“ может помочь с этим. Еще довольно интересный вопрос - ускорение частиц на Солнце. После вспышек к Земле приходят потоки большого числа ускоренных электронов и протонов. Не до конца ясно, однако, происходит ли их ускорение непосредственно на Солнце, а потом они просто движутся к Земле по инерции, или эти частицы дополнительно (а может быть и полностью) ускоряются на пути к Земле межпланетным магнитным полем. Возможно, когда на Землю придут данные, собранные зондом вблизи Солнца, с этим вопросом тоже можно будет разобраться. Есть еще несколько аналогичных проблем, продвинуться в решении которых можно тем же путем, - сравнив аналогичные измерения вблизи Солнца и на уровне земной орбиты. В целом, именно на решение таких вопросов и нацелена миссия. Остается только надеяться, что аппарат ждет успех», - говорит Сергей Богачев.

Прямиком в пекло

Зонд «Паркер» будет запущен 11 августа 2018 года со стартового комплекса SLC-37 на базе ВВС США на мысе Канаверал, в космос его будет выводить тяжелая ракета-носитель Delta IV Heavy - это самая мощная ракета из действующих, она может выводить на низкую орбиту почти 29 тонн груза. По грузоподъемности ее превосходит только , но этот носитель пока находится в стадии испытаний. Чтобы добраться в центр Солнечной системы, необходимо погасить очень высокую скорость, которую имеет Земля (и все объекты на ней) относительно Солнца - около 30 километров в секунду. Помимо мощной ракеты для этого понадобится серия гравитационных маневров у Венеры.

По плану процесс сближение с Солнцем продлится семь лет - с каждой новой орбитой (всего их 24) аппарат будет все ближе подходить к светилу. Первый перигелий будет пройден уже 1 ноября, на расстоянии 35 солнечных радиусов (около 24 миллионов километров) от звезды. Затем, после серии из семи гравитационных маневров вблизи Венеры, аппарат сблизится с Солнцем до расстояния около 9-10 солнечных радиусов (около шести миллионов километров) - это произойдет в середине декабря 2024 года. Это в семь раз ближе, чем перигелий орбиты Меркурия, еще ни один рукотворный космический аппарат не подбирался настолько близко к Солнцу (текущий рекорд принадлежит аппарату Helios-B , который приближался к звезде на 43,5 миллиона километров).


Схема перелета до Солнца и основных рабочих орбит зонда.


Основные этапы работы на каждой из орбит.

Выбор подобной позиции для наблюдений не случаен. По расчетам ученых, на расстоянии десяти радиусов от Солнца находится точка Альвена - область, где солнечный ветер ускоряется настолько, что покидает Солнце, а волны, распространяющиеся в плазме, уже не оказывают на него влияния. Если зонд сможет оказаться вблизи точки Альвена, то можно считать, что он вошел в солнечную атмосферу и коснулся Солнца.


Зонд «Паркер» в собранном состоянии, в ходе установки на третью ступень ракеты-носителя.

"Задача зонда заключается в измерении основных характеристик солнечного ветра и солнечной атмосферы вдоль своей траектории. Научные инструменты на его борту не являются уникальными, не обладают рекордными характеристиками (если не считать такими способность выдержать потоки солнечной радиации в перигелии орбиты). Parker Solar Probe - это аппарат с обычными приборами, но на уникальной орбите. Большинство (а может быть, даже все научные приборы) планируется держать отключенными на всех участках орбиты, кроме перигелиев, где аппарат наиболее близок к Солнцу. В некотором смысле такая научная программа дополнительно акцентирует, что главной задачей миссии является изучение солнечного ветра и солнечной атмосферы. Когда аппарат будет уходить от перигелия, данные с тех же приборов будут превращаться в рядовые, и для сохранения ресурса научных инструментов их будут просто переключать в фоновый режим до следующего сближения. В этом смысле способность выйти на заданную траекторию и способность прожить на ней заданное время - это те факторы, от которых в первую очередь будет зависит успех миссии«, - рассказывает Сергей Богачев.


Устройство теплозащитного щита «Паркера».

Greg Stanley/Johns Hopkins University


Вид теплозащитного щита на этапе установки на зонд.

NASA/Johns Hopkins APL/Ed Whitman


Зонд «Паркер» с установленным теплозащитным щитом.

NASA/Johns Hopkins APL/Ed Whitman

Чтобы выжить вблизи звезды, зонд оснащен теплозащитным щитом, работающим в качестве «зонта», под которым укроются все научные приборы. Передняя часть щита будет выдерживать нагрев до температур более 1400 градусов Цельсия, в то время как температура его задней части, где находятся научные инструменты, не должна превысить тридцати градусов Цельсия. Такой перепад температур обеспечивает особая конструкция этого «солнечного зонтика». При общей толщине всего в 11,5 сантиметра он состоит из двух панелей, сделанных из углеграфитового композита , между которыми находится слой углеродной пены. На переднюю часть щита нанесено защитное покрытие и белый керамический слой, увеличивающий его отражательные свойства.


Кроме щита, проблему перегрева призвана решить система охлаждения, использующая в качестве хладагента 3,7 литра деионизированной воды, находящейся под давлением. Электрическая проводка аппарата сделана с использованием высокотемпературных материалов, таких как сапфировые трубочки и ниобий, а во время сближений с Солнцем солнечные панели будут убираться под тепловой щит. Помимо сильного нагрева, инженерам миссии придется учитывать сильное световое давление со стороны Солнца, которое будет сбивать правильную ориентацию зонда. Чтобы облегчить эту работу, на зонд в разных местах установлены датчики солнечного света, помогающие контролировать защищенность научной аппаратуры от воздействия Солнца.

Инструментарий

Практически все научные инструменты зонда «заточены» под изучение электромагнитных полей и свойств окружающей его солнечной плазмы. Исключение составляет лишь оптический телескоп WISPR (Wide-field Imager for Solar PRobe), задачей которого станет получение изображений солнечной короны и солнечного ветра, внутренней гелиосферы, ударных волн и любых других наблюдаемых аппаратом структур.

Корона составляет внешнюю атмосферу Солнца, переходя в самых внешних частях своих в межпланетную среду. Внешне она выглядит как серебр истожемчужное сияние вокруг Солнца. В ней много деталей - лучи, перья, опахала, арки и т. п. В годы максимума солнечных пятен корона окружает все Солнце довольно симметричным образом и имеет в общем «растрепанный» вид (рис. 27). В годы минимума пятен она сжата у полюсов и вытянута вдоль экватора (рис. 28). Таким образом, в известной степени корона есть продукт солнечной активности.

Солнечная корона там, где она соприкасается с хромосферой, несравненно ярче, чем, скажем, на расстоянии 10-12 от солнечного края, и дальше ее яркость продолжает убывать с высотой, но весьма медленно, так что она прослеживается на хороших фотографиях до расстояний от края Солнца, достигающих нескольких солнечных радиусов.

(кликните для просмотра скана)

Предел здесь кладет яркость фона неба, достигающая высокого уровня даже во время очень продолжительных затмений. Фотографий, полученные во время затмений с высоких гор и высотных самолетов, показывают простирание короны на десяток и более градусов от Солнца, где корона неприметно сливается с явлением зодиакального света (см. главу IX, § 39). Интегральный блеск короны составляет всего одну миллионную блеска Солнца (от до ). Даже самые яркие ее части ранее были недоступны наблюдениям вне затмений.

Рис. 29. Тонкая структура внутренней короны. Фотография получена вне затмения с коронографом Лио в свете зеленой корональной линии

В спектральном отношении солнечная корона содержит три составляющих: L, К и F, L - эмиссионная компонента, состоящая из двух-трех десятков ярких линий, простирающихся до высоты около 9. Эти линии видны на фоне К-составляющей - непрерывного спектра. На высоте около 3 от края Солнца к К-спектру начинает примешиваться в небольшом количестве F-составляющая, т. е. фраунгоферовспектр, качественно ничем не отличающийся от спектра солнечной фотосферы. F-спектр очень хорошо заметен уже на высоте 10, где кончается L-спектр, и эту высоту считают границей внутренней короны (рис. 29). Выше лежит внешняя корона, спектр которой на высоте 20 и больше состоит преимущественно из F-компоненты. Интегральный блеск F-компоненты составляет около блеска Солнца.

Свет внутренней короны заметно поляризован. После высоты над краем 10 поляризация, достигнув значения около 45%, быстро падает.

Можно считать, что поляризована К-компонента, а F-компонента - нет. Поляризация такова, что электрический вектор поляризованной составляющей света перпендикулярен к радиусу-вектору (в картинной плоскости), исходящему из центра Солнца.

Продолжительность наблюдений солнечной короны во время затмения вдоль всей полосы полной фазы составляет обычно 2-3 часа. За это время в короне обнаруживаются лишь самые незначительные движения. Но если корону систематически наблюдать вне затмений на коронографе Лио, нетрудно заметить изменения в короне от одного дня к другому. Повторение формы изофот L-короны в свете той или другой линии, а также устойчиво повторяющегося повышения ее излучения приблизительно через две недели (изофоты, бывшие на одном краю, переносятся на другой край Соднца) и через четыре недели (изофоты повторяются на данном краю) позволило установить с полной уверенностью факт вращения короны и найти период ее вращения - он совпал с периодом вращения Солнца, выводимым по солнечным пятнам и факелам. Корональные образования, пятна и факелы неразрывно связаны между собой.

Земная жизнь обязана своим происхождению небесному светилу. Оно греет и освещает всё находящееся на поверхности нашей планеты. Недаром поклонение Солнцу и представление его в качестве великого небесного бога нашло отражение в культах первобытных народов, населявших Землю.

Прошли века, тысячелетия, но важность его в жизни человека только возросла. Все мы – дети Солнца.

Что собой представляет Солнце?

Звезда из Галактики Млечный Путь, своей геометрической формой, представляющая огромный, раскалённый, газообразный шар, постоянно излучающий потоки энергии. Единственный источник света и тепла в нашей звёздно-планетарной системе. Сейчас Солнце пребывает в возрасте жёлтого карлика, согласно общепринятой классификации типов светил вселенной.


Характеристики Солнца

Солнце обладает следующими параметрами:

  • Возраст –4,57 миллиарда лет;
  • Расстояние до Земли: 149 600 000 км
  • Масса: 332 982 масс Земли (1,9891·10³⁰ кг);
  • Средняя плотность – 1,41 г/см³ (она увеличивается в 100 раз от периферии к центру);
  • Орбитальная скорость Солнца равна 217 км/с;
  • Скорость вращения: 1,997 км/с
  • Радиус: 695-696 тыс. км;
  • Температура: от 5 778 К на поверхности до 15 700 000 К в ядре;
  • Температура короны: ~1 500 000 К;
  • Солнце стабильно в своей яркости, оно находится в 15% самых ярких звёзд нашей Галактики. Излучает меньше ультрафиолетовых лучей, но обладает большей массой по сравнению с аналогичными звёздами.

Из чего состоит Солнце?

По своему химическому составу наше светило ничем не отличается от других звёзд и содержит: 74,5% – водорода (от массы), 24,6% – гелия, менее 1% – иных веществ (азот, кислород, углерод, никель, железо, кремний, хром, магний и другие вещества). Внутри ядра идут беспрерывные ядерные реакции превращающие водород в гелий. Абсолютное большинство массы Солнечной системы – 99,87% принадлежит Солнцу.

Понравилась статья? Поделитесь ей